cho x khác 0 thoả mãn x + 1/x = 5
Tính gt của P=x^3+1/x
cảm ơn các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4y.(x-1) - (1-x) = 4y(x-1) + (x-1) = (4y+1)(x-1)
b) (x-3)3 + 3-x = (x-3)2(x-3) +(x-3) = [(x-3)2 +1](x-3) = (x2 -6x+10)(x-3)
\(x^2\left(x^2-1\right)\left(x^2-5\right)\left(x^2-10\right)\)>0
=>\(x^2>10\)
=>x>3 và x<-3
vì \(|x|\)<5
=>\(x\in\left\{4;-4;5;-5\right\}\)
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)
Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)
=> \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .
\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn
a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu
Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)
=> -1 < x < 2
Vậy -1 < x < 2
b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu
Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy x>2 hoặc x < \(\frac{2}{3}\)
Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$
$\Leftrightarrow x^4+x\vdots x^4+1$
$\Leftrightarrow x^4+1+x-1\vdots x^4+1$
$\Leftrightarrow x-1\vdots x^4+1$
Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$
Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$
Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$
$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)
Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$
$\Leftrightarrow x^4+x\leq 0$
$\Leftrightarrow x(x^3+1)\leq 0$
$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$
Với $x=-1$ thì $y=0$
Với $x=0$ thì $y=1$
Vậy..........
Hình như bạn viết sai đề bài. Tính \(P=x^3+\frac{1}{x^3}\) chứ nhỉ.
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)\)
\(=5^3-3.1.5=125-15=110\)
đúng rồi mình viết sai đề
cảmmmmmmmmmmm ơn bạn nhiềuuuuuuuuuuu đã giải giúp mìmh 2 bài lun