K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

nhầm là n+89

9 tháng 6 2021

Đặt: \(\frac{\left(n-23\right)}{n+89}=\frac{a^2}{b^2}\)(với a,b là 2 số nguyên dương và (a,b)=1)).

Gọi d=(n-23,n+89)\(\Rightarrow n+89-\left(n-23\right)=112⋮d\). Do đó d chỉ có thể có các ước nguyên tố là 2 và 7.

Nếu d chia hết cho 7 thì: Đặt n=7k+2 ( với k là số nguyên dương). Suy ra: \(\frac{\left(n-23\right)}{n+89}=\frac{7k-21}{7k+91}=\frac{k-3}{k+13}\).

Đến đây xét vài trường hợp nữa bài này có dạng tìm k biết \(k+a,k+b\) đều là số chính phương.

30 tháng 7 2023

Ta có :

\(10\le n\le99\)

\(\Rightarrow21\le2n+1\le201\)

\(\Rightarrow2n+1\) là số chính phương lẻ (1)

\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)

\(\Rightarrow dpcm\)

\(\Rightarrow n=40⋮40\Rightarrow dpcm\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
Để $\frac{3n+9}{n-4}$ là số hữu tỉ dương thì có 2 TH xảy ra:

TH1: 

\(\left\{\begin{matrix} 3n+9>0\\ n-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n>-3\\ n>4\end{matrix}\right.\Leftrightarrow n>4\)

TH2: 

\(\left\{\begin{matrix} 3n+9< 0\\ n-4< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n< -3\\ n< 4\end{matrix}\right.\Leftrightarrow n< -3\)

17 tháng 7 2023

a) Khi a = -2 thì x = (-2 + 5)/(-12) = 3/(-12) = -1/4

Vậy x là số hữu tỉ âm

b) Khi a = -9 thì x = (-9 + 5)/(-12) = (-4)/(-12) = 1/3

Vậy x là số hữu tỉ dương

c) Để x = 0 thì a + 5 = 0

a = -5

d) Khi a = -37 thì

x = (-37 + 5)/(-12)

= (-32)/(-12)

= 8/3 > 0

Mà 0 > -1,8

Vậy x > -1,8 khi a = -37

20 tháng 10 2016

Đặt \(n^4+n^3+n^2+n+1=a^2\)

\(\Rightarrow4\left(n^4+n^3+n^2+n+1\right)=\left(2a\right)^2\)

Mà ta có : \(\left[n\left(2n+1\right)\right]^2< \left(2a\right)^2< \left[n\left(2n+1\right)+2\right]^2\)

\(\Rightarrow4a^2=\left[n\left(2n+1\right)+1\right]^2\Rightarrow n=3\)thỏa mãn đề bài.