K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 10 2021

\(A=\left(\frac{1}{x-\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{x-2\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}-1}{x+\sqrt{x}}\)

Tại \(x=4+2\sqrt{3}\)\(\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(A=\frac{\sqrt{3}}{4+2\sqrt{3}+\sqrt{3}+1}=\frac{\sqrt{3}}{5+3\sqrt{3}}\)

\(A-1=\frac{\sqrt{x}-1}{x+\sqrt{x}}-1=\frac{-1-x}{x+\sqrt{x}}< 0\)do \(x>0\).

Vậy \(A< 1\).

5 tháng 12 2018

lùa đảo à

5 tháng 12 2018

bạn k lm đc thì thôi đừng nói nhiều nha

1 tháng 8 2018

\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)

\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)

\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)

10 tháng 7 2017

\(A=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-1+2\sqrt{x}-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

6 tháng 3 2022

1, với x > 0 ; x khác 1 ; 4 

a, \(P=\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

b, Ta có P > 0 => \(\sqrt{x}-1>0\Leftrightarrow x>1\)

Kết hợp đk vậy x > 1 ; x khác 4