cho \(A=\frac{x^2+x+1}{x^2+x+1}\)
với x khác -1,x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{x-\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{x-2\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}}\)
Tại \(x=4+2\sqrt{3}\): \(\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(A=\frac{\sqrt{3}}{4+2\sqrt{3}+\sqrt{3}+1}=\frac{\sqrt{3}}{5+3\sqrt{3}}\)
\(A-1=\frac{\sqrt{x}-1}{x+\sqrt{x}}-1=\frac{-1-x}{x+\sqrt{x}}< 0\)do \(x>0\).
Vậy \(A< 1\).
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)
\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)
\(A=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-1+2\sqrt{x}-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
1, với x > 0 ; x khác 1 ; 4
a, \(P=\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, Ta có P > 0 => \(\sqrt{x}-1>0\Leftrightarrow x>1\)
Kết hợp đk vậy x > 1 ; x khác 4