tim x biet
x-8\(\sqrt{x}\)-9 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tim x biet
a)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x+\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}+1=0\left(loại\right)\end{array}\right.\)\(\Leftrightarrow x=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(ĐK:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\left(tm\right)\\x=6\left(tm\right)\end{array}\right.\)
a, (x+3)(x2 +9) < 0 . suy ra x+3 và x2 +9 trái dấu .
mà x2 luôn > hoặc bằng 0 . Nên x2+9 luôn > hoặc bằng 9 ( mang dấu dương)
vậy x+3 mang dấu âm .
vậy x thuộc tập hợp các số nguyên âm
| x - 9 | + x - 9 = 0
=> | x - 9 | = x + 9
Điều kiện :
x + 9 \(\ge\)0
Khi đó : | x - 9 | = x + 9
=> x - 9 = x + 9
=> 0x = 9 - 9
=> 0x = 0
=> x \(\in\)Z
Vậy x \(\in\)Z
Chúc em học giỏi!
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy x=0 hoặc x=4 là giá trị cần tìm
Ta có : \(\left(2x+3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=-3\\x=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=7\end{cases}}\)
x + x2 = 0
=> x(1 + x) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
vậy_
mk biến đổi về pt tích, sau đó bạn tính nốt nhé:
b) \(x+1-\left(x+1\right)^2=0\)
<=> \(\left(x+1\right)\left(1-x-1\right)=0\)
<=> \(-x\left(x+1\right)=0\)
c) \(15y\left(4y-9\right)-3\left(4y-9\right)=0\)
<=> \(3\left(4y-9\right)\left(5y-1\right)=0\)
d) \(8\left(25z+7\right)-27z\left(25z+7\right)=0\)
<=> \(\left(25z+7\right)\left(8-27z\right)=0\)
a) \(x+x^2=0\Leftrightarrow x\left(1+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
b) \(x+1-\left(x+1\right)^2=0\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow-x\left(x+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
c) \(15y\left(4y-9\right)-3\left(4y-9\right)=0\Leftrightarrow\left(15y-3\right)\left(4y-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{15}=\dfrac{1}{5}\\x=\dfrac{9}{4}\end{matrix}\right.\)
d) \(8\left(25z+7\right)-27z\left(25z+7\right)=0\Leftrightarrow\left(8-27z\right)\left(25z+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}z=\dfrac{8}{27}\\z=\dfrac{-7}{25}\end{matrix}\right.\)
Đặt: \(\sqrt{x}=a\)
\(Taco:a^2-8a-9=0\Leftrightarrow a\left(a-8\right)-9=0\Leftrightarrow a\left(a-8\right)=9=1.9\)
\(\Leftrightarrow a=9\Leftrightarrow x=9^2=81\)
\(x-8\sqrt{x}-9=0\)
\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=9\Leftrightarrow x=81\\\sqrt{x}=-1\left(loại\right)\end{cases}}\)
Vậy x = 81