K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

1 tháng 3 2022

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

\(x^2+2y^2+3xy=5\)

=>\(x^2+xy+2xy+2y^2=5\)

=>\(x\left(x+y\right)+2y\left(x+y\right)=5\)

=>\(\left(x+y\right)\left(x+2y\right)=5\)

=>\(\left(x+y\right)\left(x+2y\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)

TH1: \(\left\{{}\begin{matrix}x+y=1\\x+2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-x-2y=1-5=-4\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-y=-4\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=1-y=1-4=-3\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=5\\x+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-x-2y=5-1\\x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-y=4\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-4\\x=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+y=-1\\x+2y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-x-2y=-1-\left(-5\right)\\x+2y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-y=-1+5=4\\x+2y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=-5-2y=-5-2\cdot\left(-4\right)=-5+8=3\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+y=-5\\x+2y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-x-2y=-5-\left(-1\right)\\x+y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-y=-5+1=-4\\x+y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=4\\x=-5-y=-5-4=-9\end{matrix}\right.\)

5 tháng 12 2023

 

loading...  

14 tháng 3 2017

x^2+y^2-x^2y^2-1=-1

-x^2(y^2-1)+(y^2-1)=-1 

(y^2-1)(-x^2+1)=-1 

suy ra trường hợp 1 y^2-1=1 và -x^2+1=-1 ko thỏa do nghiệm ko nguyên 

         trường hợp 2 y^2-1=-1 và -x^2+1=1 

                            y=0,x=0 

15 tháng 8 2023

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)