K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

=>6x^2+6x-9x-9-6x^2+15x=0

=>12x-9=0

=>x=3/4

g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

12 tháng 8 2021

câu còn lại đâu bạn 

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

10 tháng 7 2021

Thế mày làm đi

 

10 tháng 7 2021

cho ít thôi thì làm

 

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

5 tháng 9 2019

a) 3x(4x - 3) - 2x(5 - 6x) = 0

=> 6x2 - 9x - 10x + 12x2 = 0

=> 18x2 - 19x = 0

=> x(18x - 19) = 0

=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)

b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0

=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0

=> 8x - 15 = 0

=> 8x = 15

=> x = 15 : 8 = 15/8

c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)

=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x

=> 4x - x2 - 5x2 - 15x = 0

=> -6x2 - 11x = 0

=> -x(6x - 11) = 0

=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)

5 tháng 9 2019

a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)

b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)

a) Ta có: 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)

b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

hay \(x=\frac{15}{8}\)

Vậy: \(x=\frac{15}{8}\)

c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)

\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)

\(\Leftrightarrow-6x^2-11x=0\)

\(\Leftrightarrow6x^2+11x=0\)

\(\Leftrightarrow x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)

d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)

\(\Leftrightarrow14x^2+18=0\)

\(\Leftrightarrow14x^2=-18\)

\(14x^2\ge0\forall x\)

nên \(x\in\varnothing\)

Vậy: \(x\in\varnothing\)

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi