1/(x-y)(x-z)+1/y(y-x)(u-z)+1/z(z-x)(z-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3

Áp dụng BĐT quen thuộc sau:\(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\frac{16}{2x+y+z}\le\frac{4}{x+y}+\frac{4}{x+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)
Tương tự:
\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)
\(\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)
Khi đó:\(16VT\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)
\(\Rightarrow VT\le1\)

Áp dụng tính chất dãy tie số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{y-z-x}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-z-x+z-x-y}{x+y+z}=-\frac{\left(x+y+z\right)}{x+y+z}=-1\)
\(\Rightarrow\hept{\begin{cases}x-y-z=-x\\y-z-x=-y\\z-y-x=-z\end{cases}\Rightarrow\hept{\begin{cases}y+z=-2x\\z+x=-2y\\x+y=-2z\end{cases}}}\)
\(\Rightarrow\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{\left(x+y\right)}{x}.\frac{\left(y+z\right)}{y}.\frac{\left(z+x\right)}{z}=-\frac{8xyz}{xyz}=-8\)