Chứng minh rằng x^2+4x+y^2-y+5 >=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+y^2+4xy+4x+2y+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)
\(=\left(2x+y+1\right)^2+1>0\forall x,y\)
Chúc bạn học tốt.
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
a, \(x^2+xy+y^2+1=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1\)
Vậy............
b, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)
\(=x^2-3xy-3xy+9y^2+4x^2-2x-2x+1+y^2-y-y+1+1\)
\(=x\left(x-3y\right)-3y\left(x-3y\right)+2x\left(2x-1\right)-\left(2x-1\right)+y\left(y-1\right)-\left(y-1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy..............
Chúc bạn học tốt!!!
\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)
\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0
\(\left(2\right)2y\ge0\) với mọi y>0
\(\left(3\right)-3\ge-3\) với x,y
(1)+(2)+(3)=> dpcm
Hiểu thì làm tiếp
\(x^2+4x+y^2-y+5=\left(x^2+4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
P/S : Cái chỗ -y phải là -2y thì mới > 0 được ,