tìm tất cả các số thực x thỏa ãn điều kiện :\(2\sqrt{x-1}+\sqrt{12-4x}\ge4\)và \(1\le x\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{x-1}+\sqrt{12-4x}\ge4\) với \(1\le x\le3\)
Áp dụng BĐT Bunhiacopxki ta có :
\(\left(2\sqrt{x-1}+\sqrt{12-4x}\right)^2\le\left(1^2+1^2\right)\left(4x-4+12-4x\right)\)
= 16
Dấu "=" xảy ra <=> 2\(\sqrt{x-1}\)=\(12-4x\) <=> x=2 ( Thỏa mãn ĐKXĐ )
=> 2\(\sqrt{x-1}+\sqrt{12-4x}\) \(\le4\)
Mà \(2\sqrt{x-1}+\sqrt{12-4x}\ge4\)
Do đó : 2\(\sqrt{x-1}+\sqrt{12-4x}\) =4
<=> x=2
Vậy nghiệm của phương trình là x=2
\(\begin{cases}\sqrt{x}+\sqrt{y}=3\left(1\right)\\\sqrt{x+5}+\sqrt{y+3}\le m\left(2\right)\end{cases}\)
Điều kiện \(\begin{cases}x\ge0\\y\ge0\end{cases}\)
Đặt \(t=\sqrt{x}\) lúc đó (1) có dạng \(\sqrt{y=3-1}\Leftrightarrow y=\left(t^2-6t+9\right)\)
Điều kiện của t : \(2\le t\)\(\le3\)
Khi đó (2) \(\Leftrightarrow\sqrt{t^2+5}+\sqrt{t^2-6t+12}\le m\)
Xét hàm số : \(f\left(t\right)=\sqrt{t^2+5}+\sqrt{t^2-6t+12}\)
- Miền xác định \(D=\left[2;3\right]\)
- Đạo hàm
\(f'\left(t\right)=\frac{t}{\sqrt{t^2+5}}+\frac{t-3}{\sqrt{t^2-6t+12}}\)
\(f'\left(t\right)=0\Leftrightarrow\frac{t}{\sqrt{t^2+5}}=\frac{3-t}{\sqrt{t^2-6t+12}}\)
\(\Leftrightarrow t\sqrt{t^2-6t+12}=\left(3-t\right)\sqrt{t^2+5}\)
\(\Leftrightarrow t^4-6t^3+12t^2=t^4-6t^3+14t^2-30t+45\)
\(\Leftrightarrow2t^2-30t+45=0\) vô nghiệm với \(x\in D\)
Mà \(f'\left(3\right)>0\Rightarrow f\left(t\right)\) đồng biến trên D do đó min \(f\left(2\right)=5\)
Để có nghiệm (x,y) thỏa mãn \(x\ge4\Leftrightarrow\) (2) có nghiệm thỏa mãn (1)
và \(x\ge4\Leftrightarrow f\left(t\right)\le m\) thỏa mãn với mọi \(2\le t\)\(\le3\)
\(\Leftrightarrow\) min \(f\left(t\right)\le m\Leftrightarrow m\ge5\)
Lời giải:
Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$
$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$
Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$
Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)
\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(3\ge x\ge1\)
Áp dụng BĐT Bunhiacopski:
\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)
Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)
Nên để thõa mãn yêu cầu bài toán thì
\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)