K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

x = 2

Giải bằng máy tính cầm tay !!!!

6 tháng 12 2017

\(2\sqrt{x-1}+\sqrt{12-4x}\ge4\) với \(1\le x\le3\)

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(2\sqrt{x-1}+\sqrt{12-4x}\right)^2\le\left(1^2+1^2\right)\left(4x-4+12-4x\right)\)

= 16

Dấu "=" xảy ra <=> 2\(\sqrt{x-1}\)=\(12-4x\) <=> x=2 ( Thỏa mãn ĐKXĐ )

=> 2\(\sqrt{x-1}+\sqrt{12-4x}\) \(\le4\)

\(2\sqrt{x-1}+\sqrt{12-4x}\ge4\)

Do đó : 2\(\sqrt{x-1}+\sqrt{12-4x}\) =4

<=> x=2

Vậy nghiệm của phương trình là x=2

24 tháng 3 2016

\(\begin{cases}\sqrt{x}+\sqrt{y}=3\left(1\right)\\\sqrt{x+5}+\sqrt{y+3}\le m\left(2\right)\end{cases}\)

Điều kiện \(\begin{cases}x\ge0\\y\ge0\end{cases}\)

Đặt \(t=\sqrt{x}\) lúc đó (1) có dạng \(\sqrt{y=3-1}\Leftrightarrow y=\left(t^2-6t+9\right)\)

Điều kiện của t : \(2\le t\)\(\le3\)

Khi đó (2) \(\Leftrightarrow\sqrt{t^2+5}+\sqrt{t^2-6t+12}\le m\)

Xét hàm số : \(f\left(t\right)=\sqrt{t^2+5}+\sqrt{t^2-6t+12}\)

- Miền xác định \(D=\left[2;3\right]\)

- Đạo hàm 

\(f'\left(t\right)=\frac{t}{\sqrt{t^2+5}}+\frac{t-3}{\sqrt{t^2-6t+12}}\)

\(f'\left(t\right)=0\Leftrightarrow\frac{t}{\sqrt{t^2+5}}=\frac{3-t}{\sqrt{t^2-6t+12}}\)

                \(\Leftrightarrow t\sqrt{t^2-6t+12}=\left(3-t\right)\sqrt{t^2+5}\)

                \(\Leftrightarrow t^4-6t^3+12t^2=t^4-6t^3+14t^2-30t+45\)

                \(\Leftrightarrow2t^2-30t+45=0\) vô nghiệm với \(x\in D\)

Mà \(f'\left(3\right)>0\Rightarrow f\left(t\right)\) đồng biến trên D do đó min \(f\left(2\right)=5\)

Để có nghiệm (x,y) thỏa mãn \(x\ge4\Leftrightarrow\) (2) có nghiệm thỏa mãn (1)

và \(x\ge4\Leftrightarrow f\left(t\right)\le m\) thỏa mãn với mọi \(2\le t\)\(\le3\)

                \(\Leftrightarrow\) min \(f\left(t\right)\le m\Leftrightarrow m\ge5\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)

Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$

$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$

Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$

Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)

12 tháng 11 2021

\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)

Vậy ...

12 tháng 11 2021

ĐKXĐ: \(3\ge x\ge1\)

Áp dụng BĐT Bunhiacopski:

\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)

Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)

Nên để thõa mãn yêu cầu bài toán thì

\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)