Tìm GTNN: H=x^2-2x+y^2-4y+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=x^2+2x-y^2+4y-7\)
\(C=x^2+2x-y^2+4x+1-4-4\)
\(C=\left(x^2+2x+1\right)-\left(y^2-4y+4\right)-4\)
\(C=\left(x+1\right)^2-\left(y-2\right)^2-4\)
Vì \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow C=\left(x+1\right)^2-\left(y-2\right)^2-4\ge0-0-4\)
\(\Rightarrow C\ge-4\)
Vậy\(GTNN_C=-4\)tại \(x=-1\)và \(y=2\)
\(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của \(C\) là \(2\) khi \(x=1\) và \(y=2\)
Chúc bạn học tốt ~
Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
Lời giải:
Ta có: \(x^2-2x+y^2-4y+7\)
\(=(x^2-2x+1)+(y^2-4y+4)+2\)
\(=(x-1)^2+(y-2)^2+2\)
Ta thấy: \(\left\{\begin{matrix} (x-1)^2\geq 0\\ (y-2)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)
Do đó: \((x-1)^2+(y-2)^2+2\geq 0+0+2\)
hay \(x^2-2x+y^2-4y+7\geq 2\)
Vậy GTNN của biểu thức là $2$
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)
Bài làm:
+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)
Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)
+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)
\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)
Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)
+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)
\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Học tốt!!!!
\(H=x^2-2x+y^2-4y+7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
\(minH=2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)