Rút gọn phân thức sau
Giúp mình với các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=\left(x+2\right)^2-\left(2x-1\right)^2\)
\(=x^2+4x+4-4x^2+4x-1\)
\(=-3x^2+8x+3\)
bn hiu ve pt la dung roi va no rât qui để sau nay bn giải phuong trinh , con rut gọn la + - , : sao cho thu gọn đa thuc lai
vd 4x - 5 + x +9= 5x+ 4 vậy đó mk rút gọn xong
bn chu y nhieu đến pt vi nó quí lắm
\(\frac{5\left(3x-2\right)}{3x\left(x+1\right)-2\left(x+1\right)}=\frac{5\left(3x-2\right)}{\left(x+1\right)\left(3x-2\right)}=\frac{5}{x+1}\)
Ta có: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{3^{32}-1}{2}\)
Rút gọn: (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(3-1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(32-1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(34-1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(38-1)(38 + 1)(316 + 1)(332 + 1)
A=(316-1)(316 + 1)(332 + 1)
A=(332 - 1)(332 + 1)
A=364-1
=>A=(364-1) /2
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
\(A=\left(\dfrac{2-x}{2+x}-\dfrac{16}{4-x^2}-\dfrac{2+x}{2-x}\right)\)
\(\Rightarrow A=\left(\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}-\dfrac{16}{\left(2+x\right)\left(2-x\right)}-\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}\right)\)\(\Rightarrow A=\left(\dfrac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}-\dfrac{16}{\left(2+x\right)\left(2-x\right)}-\dfrac{4+4x+x^2}{\left(2+x\right)\left(2-x\right)}\right)\)
\(\Rightarrow A=\dfrac{4-4x+x^2-16-4-4x-x^2}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8x-16}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8\left(x+2\right)}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8}{2-x}\)
\(\Rightarrow A=\dfrac{8}{x-2}\)
\(\frac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2zx}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2-2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x-z\right)^2-y^2}\)
\(=\frac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-z-y\right)\left(x-z+y\right)}\)
\(=\frac{x+y+z}{x-z-y}\)