a cho a + b+ c =2019 Chứng minh rằng \(a^3+b^3+c^3⋮\) 3 (a;b;c \(\varepsilonℤ\))
Cho đa thức f(x) = \(x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
g(x) = \(x^9+x^8+x^7+...+x+1\)
Chứng minh rằng f(x) chia hết cho g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề bài. Nếu $a,b,c$ là 3 số lẻ thì $a^3+b^3+c^3$ lẻ nên không thể chia hết cho $6$
Tham khảo lời giải tại đây:
Câu hỏi của Nguyen ANhh - Toán lớp 8 | Học trực tuyến
một số mũ 2 đều lớn hơn hoặc 0
mà cả 3 số cộng lại bằng 1
=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1
mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1
=> a2017+b2018+c2019=1
Lời giải:
\(a^3+b^3=c^3+d^3\)
$\Leftrightarrow (a+b)^3-3ab(a+b)=(c+d)^3-3cd(c+d)$
Mà $a+b=c+d$ nên $ab(a+b)=cd(c+d)$
Đến đây ta xét 2TH:
TH $a+b=c+d=0$ thì $a^{2019}+b^{2019}=c^{2019}+d^{2019}=0$ (đpcm)
TH $a+b=c+d\neq 0$ thì $ab=cd\Leftrightarrow \frac{a}{d}=\frac{c}{b}$
Đặt $\frac{a}{d}=\frac{c}{b}=t\Rightarrow a=dt; c=bt$
Khi đó:
$a+b=c+d$
$\Leftrightarrow dt+b=bt+d\Leftrightarrow (t-1)(d-b)=0$
Nếu $t-1=0\Rightarrow a=d; c=b$
$\Rightarrow a^{2019}=d^{2019}; b^{2019}=c^{2019}$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Nếu $d-b=0\Leftrightarrow b=d\Rightarrow a=c$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Vậy..........
Lời giải:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3-3ab+1=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)
\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)
Vì $a,b>0$ nên $a+b+1\neq 0$
Do đó:
\(a^2+b^2+1-a-b-ab=0\)
\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)
\(\Rightarrow a=b=1\)
Do đó: \(a^{2018}+b^{2019}=1+1=2\)
Ta có đpcm.
EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath
Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b
=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)
và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)
Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=2019^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^3+b^3+c^3\)
\(2019⋮3\Rightarrow2019^3⋮3\left(1\right)\)
\(3⋮3;a,b,c\in Z\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮3\left(2\right)\)
từ (1) và (2) \(\Rightarrow a^3+b^3+c^3⋮3\)