kết quả trung bình cộng của C và 68,72,99 thì C nhỏ hơn trung bình cộng của các số đo 14 don vi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trung bình cộng các số là:
(68+72+99-14) :3 = 75
Số C là:
75 - 14 = 61
Đáp số : 61
Theo đề bài ta có : (C + 68 + 72 + 99) : 4 = C + 14
=> C + 68 + 72 + 99 = (C + 14 ) x 4 (cùng nhân 2 vế với 4)
=> C + 239 = C x 4 + 56
=> 183 = c x 3 ( cùng bớt 2 vế cho C và 56)
C = 183 : 3
C = 61. Vậy số phải tìm là 61
Nếu lấy trung bình cộng 3 số a, b,c thì ta được kết quả: \(\frac{a+b+c}{3}\)
Nếu lấy trung bình cộng của a và b, rồi lấy trung bình cộng của kết quả này với c, ta được kết quả: \(\frac{\frac{a+b}{2}+{c}}{2}\)
Ta xét biểu thức \(\frac{a+b+c}{3}-\frac{\frac{a+b}{2}+{c}}{2}=\frac{a+b+c}{3} - \frac{a+b+2c}{4}=\frac{4a+4b+4c-3a-3b-6c}{12}=\frac{a+b-2c}{12}\)
Đến đây, vì \(a>b>c \Rightarrow a+b>2c \iff a+b-2c>0 \iff \frac{a+b-2c}{12}>0\)
Từ đây ta có thể suy ra \(\frac{a+b+c}{3}>\frac{\frac{a+b}{2}+c}{2} \Rightarrow đpcm\)
Cách tính đúng là: \(\frac{a+b+c}{3}\)
Cách tính của bạn An là: \(\frac{\frac{a+b}{2}+c}{2}=\frac{a+b+2c}{4}\)
Ta có: \(\frac{a+b+c}{3}\)\(-\frac{a+b+2c}{4}\)
\(=\frac{4a+4b+4c-3a-3b-6c}{12}\)
\(=\frac{a+b-2c}{12}=\frac{\left(a-c\right)+\left(b-c\right)}{12}>0\)(vì a > b > c)
Vậy \(\frac{a+b+c}{3}\)\(>\frac{a+b+2c}{4}\)
=> đpcm...