K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Xét bất đẳng thức phụ\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)(*)

Thật vậy: (*)\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\)

Áp dụng kết hợp bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức AM - GM, ta được: \(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^4}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)^6}{4}}=\left(b+c\right)^3\)

Vậy bất đẳng thức phụ trên là đúng. Tương tự rồi cộng lại ta được \(VT\ge1\)

Đẳng thức xảy ra khi 3 biến bằng nhau hoặc có 2 biến dần về 0

31 tháng 7 2019

a, b, c > 0 mà sao abc = 0 được vậy nhỉ:))

31 tháng 7 2019

#)Góp ý :

Nguyễn Khang chuẩn :v

Rõ bảo mong k muốn ai thấy nick này mak cứ ló mặt ra lm chi ???

Lấy nick tth_new có ph nhanh hơn k ^^

19 tháng 5 2019

Em không chắc lắm đâu nhé!

Biến đổi \(A=\frac{\left(\frac{a^4}{b^2}\right)}{b\left(c+2a\right)}+\frac{\left(\frac{b^4}{c^2}\right)}{c\left(a+2b\right)}+\frac{\left(\frac{c^4}{a^2}\right)}{a\left(b+2c\right)}\)

\(=\frac{\left(\frac{a^2}{b}\right)^2}{b\left(c+2a\right)}+\frac{\left(\frac{b^2}{c}\right)^2}{c\left(a+2b\right)}+\frac{\left(\frac{c^2}{a}\right)^2}{a\left(b+2c\right)}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)

Áp dụng BĐT Cauchy-Schwarz cho cái biểu thức trong ngoặc ở trên tử,ta lại được:

\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\) (áp dụng BĐT quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) cho cái biểu thức dưới mẫu)

Dấu "=" xảy ra khi a = b =c

Vậy \(A_{min}=1\Leftrightarrow a=b=c\)

11 tháng 2 2020

Gọi \(A=\frac{a}{\left(b+3\right)^3}+\frac{b}{\left(c+a\right)^3}+\frac{c}{\left(a+b\right)^3}\)

Và: \(B=a+b+c\)

Áp dụng BĐT Holder ta có:

\(A.B.B\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\left(\frac{3}{2}\right)^3\)

\(\Rightarrow A\ge\frac{27}{8\left(a+b+c\right)^2}\left(đpcm\right)\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Bài 1)

Dạng tổng quát của BĐT Holder khá rắc rối. Người ta thường chú ý đến dạng phổ biến nhất là BĐT Holer bậc 3.

\((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)

Cách CM (AM-GM):

\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3axm}{\sqrt[3]{(a^3+b^3+c^3)(x^3+y^3+z^3)(m^3+n^3+p^3)}}\)

Tương tự với với các bộ còn lại và cộng lại thu được đpcm

Áp dụng BĐT Holder bậc ba:

\((a^3+b^3+16c^3)(1+1+\frac{1}{4})(1+1+\frac{1}{4})\geq (a+b+c)^3\)

\(\Leftrightarrow (a^3+b^3+16c^3).\frac{81}{16}\geq (a+b+c)^3\)

\(\Rightarrow P\geq \frac{16}{81}\)

Vậy \(P_{\min}=\frac{16}{81}\Leftrightarrow a=b=4c\)

2 tháng 2 2017

Help

1 tháng 1 2020

<3 

Cần CM: \(\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}a-\frac{27}{16}\)\(\left(0< a< 1\right)\)

thaajt vậy, bđt \(\Leftrightarrow\)\(\left(a-\frac{1}{3}\right)^2\left(15a^2-38a+27\right)\ge0\) đúng 

\(\Sigma\frac{a}{\left(b+c\right)^3}=\Sigma\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}\left(a+b+c\right)-\frac{81}{16}=\frac{27}{8}\)

dấu "=" xảy ra khi a=b=c=1 

1 tháng 1 2020

à nhầm, \(a=b=c=\frac{1}{3}\)

29 tháng 1 2019

Bạn cho mình hỏi là chỉ a,b > 0 hay cả a,b,c > 0 vậy

7 tháng 4 2020

Ta có: \(P=1+\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)+\left(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{a^3c^3}+\frac{1}{a^3b^3c^3}\right)\)

\(P\ge a+\frac{3}{abc}+\frac{3}{a^2b^2c^2}+\frac{1}{a^3b^3c^3}=\left(1+\frac{1}{abc}\right)^3\) (BĐT Cosi cho 3 số dương)

Theo BĐT Cosi \(abc\le\left(\frac{a+b+c}{3}\right)^3=8̸\)\(\Rightarrow abc\le8\Rightarrow\frac{1}{abc}\ge\frac{1}{8}\)

Vậy \(P\ge\left(1+\frac{1}{8}\right)^3=\frac{729}{512}\)

Dấu "=" xảy ra khi a=b=c=2