K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có 1/101+1/102+1/103+.........+1/200                                                                                                                                                    =(1/101+1/102+...+1/125)+(1/126+1/127+...+1/150)+(1/151+...+1/175)+(1/176+...+1/200)                                                                        =25/125                         +    25/150                      +       25/175         +  25/200                                                                                      =(1/6+1/7+1/8)+1/9                                                                                                                                                                             =107/210+1/8>1/2+1/8=5/8                                                                                                                                                                 VẬY A>5/8                  nhớ k giúp mình nhé chúc bạn học tốt

5 tháng 9 2017

GỌI DÃY SỐ CẦN CHỨNG MINH LÀ A

TA CHIA A THÀNH CÁC NHÓM , MỖI NHÓM 25 SỐ HẠNG , TA ĐƯỢC :

                  100 : 25 = 4 ( NHÓM )

TA CÓ :

A = ( 1/101 + 1/102 +...+1/125 ) + (1/126 + 1/127 +...+ 1/150 ) + (1/151 + 1/152 + ....+ 1/175 ) + (1/176 + 1/177 + ...+ 1/200 )

<=> A >1/125 X 25 + 1/150 X 25 + 1/175 X 25 + 1/200X 125 

<=>A > (1/5 + 1/6 + 1/7 ) + 1/8 

<=> A > 107/210 + 1/8 > 1/2 + 1/8 = 5/8

<=> A > 5/8 ( ĐPCM )

14 tháng 4 2016

dãy trên có 200 p/số ghép số đầu với cuối,lần lượt có:

(1/101+1/200)+(1/102+1/199)+(1/103+1/198)+........+(1/149+1/152)+(1/150+1/151)

quy đồng và cộng vào  lên ta có:

S=301/101.200+301/102.199+........+301/150.151

S=301.(1/101.200+1/102.1/199+.....+1/150.151)

số phân số trong ngoặc có 50 phân số nên:

S<301.50.1/101.200

S<301.1/404

S<301/404<303/404=3/4

vậy S<3/4

chúc học tốt

bài này hơi xương nên ủng hộ mik nha TT

20 tháng 3 2017

HA ~~! Vẫn còn bài này !

1/101>1/150 
1/102>1/150 
1/103>1/150 
.... 
1/150=1/150 
Tất cả có 50 dữ kiện 
Vậy 1/101+1/102+...+1/150>50/150=1/3 (1) 

Tiếp theo 
1/151>1/200 
1/152>1/200 
... 
1/200=1/200 
Tương tự trên, thì :
1/151+......+1/200>50/200=1/4 (2) 

Cộng (1) và (2), thì A>(1/3+1/4)=7/12 \(\left(ĐPCM\right)\).

29 tháng 1 2020

Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> Điều phải chứng minh 

18 tháng 9 2019

Biến đổi vế phải của đẳng thức :

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{100}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right]\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)

Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

 \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)

2 tháng 6 2016

\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\) (mỗi ngoặc có 50 số hạng)

\(;A>\left(\frac{1}{150}.50\right)+\left(\frac{1}{200}.50\right)=50.\left(\frac{1}{150}+\frac{1}{200}\right)=50.\frac{7}{600}=\frac{7}{12}\)

18 tháng 12 2017

banh

5 tháng 8 2015

Có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}<\frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1\)

5 tháng 8 2015

Vì \(\frac{1}{101}>\frac{1}{102}>...>\frac{1}{200}\) Nên A<\(\frac{1}{101}+\frac{1}{101}+....+\frac{1}{101}\)(100 số hạng ) \(=100.\frac{1}{101}=\frac{100}{101}<1\)Suy ra đpcm

BẠN NHỚ ĐÚNG CHO MÌNH NHÉ