\(\dfrac{4}{x}\) + \(\sqrt{x-\dfrac{1}{x}}\) = x + \(\sqrt{2x-\dfrac{5}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)
\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)
Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)
=>x+6<0
=>x<-6
b: ĐKXĐ: (-2)/(6-x)>=0
=>6-x<0
=>x>6
c: ĐKXĐ: (-x+3)/(-6)>=0
=>-x+3<=0
=>-x<=-3
=>x>=3
d: ĐKXĐ: (7x-1)/-9>=0
=>7x-1<=0
=>x<=1/7
e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0
=>x+2>=0
=>x>=-1
f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0
=>x-2>=0
=>x>=2
a) Đk: \(x>0;x\ne9;x\ne25\)
Đặt \(A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right]\)\(:\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}+x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{-\sqrt{x}+5}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(3+\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-5}\)
\(=\dfrac{x}{\sqrt{x}-5}\)
b) Đk: \(x\ge0;x\ne1;x\ne25\)
Biểu thức
\(=\left[\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{x+9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]:\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)+\sqrt{x}\left(\sqrt{x}+5\right)-x-9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}+5}{1-\sqrt{x}}\)
\(=\dfrac{x-7\sqrt{x}+10+x+5\sqrt{x}-x-9}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)\(=\dfrac{\left(1-\sqrt{x}\right)^2}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}=\dfrac{1-\sqrt{x}}{\sqrt{x}-5}\)
a: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-\left(2\sqrt{x}+1\right)+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
b: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x-4+5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
a: ĐKXĐ: x^2-2x<>0 và x^2-1>0
=>(x>1 và x<>2) hoặc x<-1
b: ĐKXĐ: x+1>0 và 5-3x>0
=>x>-1 và 3x<5
=>-1<x<5/3
c: DKXĐ: 5x+3>=0 và 3-x>0
=>x>=-3/5 và x<3
=>-3/5<=x<3
d: ĐKXĐ: 4-x^2>0 và 1+x>=0
=>x^2<4 và x>=-1
=>-2<x<2 và x>=-1
=>-1<=x<2
e: ĐKXĐ: 2-3x<>0 và 1-6x>0
=>x<>2/3 và x<1/6
=>x<1/6
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
1: ĐKXĐ: \(a>-2\)
2: ĐKXĐ: \(x\ne2\)
3: ĐKXĐ: \(a\in\varnothing\)
1)
\(-\dfrac{1}{\sqrt{a+2}}\) có nghĩa khi \(\sqrt{a+2}>0\)
=>a+2>0
a>-2
2)
\(\sqrt{\dfrac{3}{\left(x-2\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(x-2\right)^2}}\)
mà \(\left(x-2\right)^2>0=>\sqrt{\left(x-2\right)^2}>0vớimọix\)
3)
\(\sqrt{\dfrac{-3}{a^2-4a+4}}=\sqrt{\dfrac{-3}{\left(a-2\right)^2}}cónghĩakhi\left(a-2\right)^2< 0mà\left(a-2\right)^2>0=>biểuthứckocónghĩavớimọia\)
a. Áp dụng công thức L'Hospital:
\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)
b.
\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)
c. Áp dụng quy tắc L'Hospital:
\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)
d.
\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)
Lời giải:
ĐKXĐ:.......
$PT\Leftrightarrow \frac{4}{x}-x=\sqrt{2x-\frac{5}{x}}-\sqrt{x-\frac{1}{x}}$
$\Leftrightarrow \frac{4}{x}-x = \frac{(2x-\frac{5}{x})-(x-\frac{1}{x})}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$
$\Leftrightarrow \frac{4}{x}-x = \frac{x-\frac{4}{x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$
$\Leftrightarrow (\frac{4}{x}-x)\left[1+\frac{1}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}\right]=0$
Hiển nhiên biểu thức trong ngoặc vuông luôn dương nên $\frac{4}{x}-x=0$
$\Rightarrow 4-x^2=0$
$\Leftrightarrow x=\pm 2$
Thử lại thấy $x=2$ thỏa mãn.
Vậy.......
\(\Leftrightarrow x-\dfrac{4}{x}=\sqrt{x-\dfrac{1}{x}}-\sqrt{2x-\dfrac{5}{x}}\)
\(x-\dfrac{4}{x}=\dfrac{\dfrac{4}{x}-x}{\sqrt{x-\dfrac{1}{x}}+\sqrt{2x-\dfrac{5}{x}}}\)
x-4/x>0
=>4/x-x<0
=>Loại
x-4/x<0
=>4/x-x>0
=>Mâu thuẫn
=>Loại
Do đó, chỉ có 1 trường hợp là x-4/x=0
=>x=2