cho \(x^2+y^2+z^2=3\)
CMR:\(xy^2+yz^2+zx^2\le2+xyz\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tính tổng quát giả sử y nằm giữa x và z
=> x(y - z)(y - x) ≤ 0
hay xy2 + zx2 ≤ x2y + xyz
Ta cần chứng minh: x2y + yz2 ≤ 2.
Ta có: x2 + y2 + z2 = 3
<=> x2 + z2 = 3 - y2.
Ta có: \(x^2y+yz^2\le2\Leftrightarrow y\left(x^2+z^2\right)\le2\)
\(\Leftrightarrow y\left(3-y^2\right)\le2\)
\(\Leftrightarrow3y-y^3\le2\)\(\Leftrightarrow y^3+2\ge3y\)(đúng, vì theo AM-GM có:\(y^3+1+1\ge3\sqrt[3]{y^3}=3y\))
=> Đpcm
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
\(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=9\Rightarrow xy+yz+zx\ge3\)
\(2\left(x^2+y^2\right)-xy\ge\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2=\dfrac{3}{4}\left(x+y\right)^2\)
Tương tự và nhân vế với vế:
\(VT\ge\dfrac{27}{64}\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)
Mặt khác ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)
\(\Rightarrow VT\ge\dfrac{27}{64}.\dfrac{64}{81}.3\left(xy+yz+zx\right)^3\ge3^3=27\) (đpcm)
Can them dieu kien cua x;y;z vi du x;y;z>0
WLOG \(x\ge y\ge z\)
Ap dung BDT Rearrangement ta co:
\(VT=xy^2+yz^2+zx^2\le x^2y+xyz+yz^2\)
\(=xyz+y\left(x^2+z^2\right)=\text{}xyz+y\left(3-y^2\right)\)
\(\le\text{}xyz+2=VP\)
Cảm ơn bạn