K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

Đặt \(x^2+13=t\Leftrightarrow x^2=t-13\).Thay vào,ta có:

\(PT\Leftrightarrow\left(t-13\right)^2+\left(t-13\right)=0\)

Mà \(\left(t-13\right)^2\ge0\) nên \(\left(t-13\right)^2+\left(t-13\right)\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(t-13\right)^2=t-13\)

Dễ giải được t = 12. Suy ra \(x^2=t-13=12-13=-1\)

Suy ra phương trình vô nghiệm. (do \(x^2\ge0\forall x\))

Vậy \(x\in\varnothing\)

1 tháng 1 2019

toán 8 nhé bạn
dùng Hằng đẳng thức đáng nhớ số 2

1 tháng 1 2019

nâng cao bạn ạ

4 tháng 7 2019

\(\sqrt{x^2-6x+13}=0\)

\(\Leftrightarrow x^2-6x+13=0\)

\(\Leftrightarrow x^2-6x+9+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+4=0\)

Mà: \(\left(x+3\right)^2+4\ge4>0\forall x\)

=> Không có giá trị của x thỏa mãn

\(\sqrt{x^2+4}=x+2\)

\(\Leftrightarrow\hept{\begin{cases}x^2+4=\left(x+2\right)^2\\x+2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+4=x^2+4x+4\\x>-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x>-2\end{cases}}\)

Vậy: PT có tập nghiệm S = { 0 }

=.= hk tốt!!

27 tháng 6 2018

Câu 1) x\(^2\) - 5 = 0

\(\Leftrightarrow\)(x - \(\sqrt{5}\))(x + \(\sqrt{5}\)) = 0

\(\Leftrightarrow\)x = \(\sqrt{5}\) hoặc

x = -\(\sqrt{5}\)

Câu 2) x\(^2\) - \(2\sqrt{13}x\) +13 = 0

\(\Leftrightarrow\)(x - \(\sqrt{13}\))\(^2\) = 0

\(\Leftrightarrow\)x - \(\sqrt{13}\) = 0

\(\Leftrightarrow\)x = \(\sqrt{13}\)

Câu 3) \(\left(x+2\right)\sqrt{x-3}=0\)

\(\Leftrightarrow x=-2\) hoặc

\(x=3\)

Câu 4) Tới lúc này mình hơi lười nên bạn tự giải phương trình nhé.

Hướng dẫn: Ta biết nếu\(\sqrt{x}\) = a với a\(\ge\) 0 thì x= a\(^2\), nên ta đưa về tìm x thỏa mãn (x + \(\sqrt{x-2}\))\(^2\) = 4(x-1)

Giải phương trình này ta có x=2.

Câu 5)\(\sqrt{9-12x+4x^2}=4\)

\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4\)

\(\Leftrightarrow\left|3-2x\right|=4\)

\(\Leftrightarrow3-2x=4\) hoặc

-3 + 2x = 4

\(\Leftrightarrow\) x= -0.5 hoặc x= 3.5

a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)

b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)

6 tháng 2 2022

nhờ bạn có thể giải chi tiết cho mình câu 1b đc ko