Cho hình chữ nhật ABCD có đường chéo AC = 11 cm và AD = 4 cm.
Độ dài BD = cm và CB = cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài, chiều rộng và đường chéo của hình chữ nhật đó lần lượt là a,b,c . Áp dụng định lí Pitago ta có
:\(a^2+b^2=c^2\)
\(4^2+6^2=c^2\)
\(=>c^2=52\)
\(=>c=\sqrt{52}=7,2cm\)
Học tốt
Bổ sung câu trả lời của mk nha:
vậy độ dài đường chéo bằng 7,2 cm
Độ dài đường chéo là: \(\sqrt{4^2+3^2}=5\left(cm\right)\)
a) Vẽ hình chữ nhật ABCD có chiều dài 4 cm, chiều rộng 3 cm. Sau đó nối đỉnh A với đỉnh C, đỉnh B, đỉnh D.
b) Đo chiều dài đoạn thẳng
AC, BD rồi viết số thích hợp vào chỗ chấm:
- AC = 5 cm
- BD = 5 cm
c) Nhận xét:
Độ dài AC = độ dài BD
(AC, BD là hai đường chéo của hình chữ nhật)
Độ dài đường chéo BD là:
40×35=24(cm)
Diện tích hình thoi ABCD là:
40×24:2=480( c m 2 )
Vì hình chữ nhật GHIK có diện tích bằng diện tích hình thoi ABCD nên diện tích hình chữ nhật GHIK là 480 c m 2 .
Chiều dài hình chữ nhật là:
480:15=32(cm)
Chu vi hình chữ nhật là:
(32+15)×2=94(cm)
Đáp số: 94cm.
Vậy đáp án đúng điền vào ô trống là 94.
Bài 1 : A B C D 4
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
A B C D 3 căn27
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
gọi chiều dài là a, chiều rộng là b,đường chéo là c
ta có : c^2=a^2+b^2
=> 25^2=a^2+b^2
vì b=3/4.a
=> a^2+(3/4.a)^2=625
=> a^2+9/16.a^2=625
=> a^2+(1+9/16)=625
=> a^2 . 25/16 =625
=> a^2 =400
=> a =20
=> b =15
vậy chiều dài là 20cm,chiều rộng là15cm
Vì ABCD là hcn
=> AC = BD = 11 (cm)
BC = AD = 4 cm
4cm ban nhe