K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

a) Đặt \(x=\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\)Vì x > 0 \(\Rightarrow x=\sqrt{x^2}\)

\(\Rightarrow x^2=2a+2\sqrt{a^2-b}=4\left(\frac{a+\sqrt{a^2-b}}{2}\right)\)\(\Rightarrow x=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)hay \(\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)(1)

Tương tự : Đặt \(y=\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\) 

Xét biểu thức \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}>0\Leftrightarrow a+\sqrt{b}>a-\sqrt{b}\Leftrightarrow\sqrt{b}>0\)(luôn đúng)

Do đó : \(y>0\) \(\Rightarrow y=\sqrt{y^2}\)

Ta có : \(y^2=2a-2\sqrt{a^2-b}=4\left(\frac{a-\sqrt{a^2-b}}{2}\right)\Rightarrow y=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)hay \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(2)

Cộng (1) và (2) theo vế ta được : \(\sqrt{a+\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(đpcm)

Câu b) bạn làm tương tự nhé!

25 tháng 5 2016

Căn thức phức tạp trên mạng có

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Lời giải:
Do $abc=1$ nên đặt:

\((\sqrt{a}, \sqrt{b}, \sqrt{c})=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})\) với $x,y,z>0$

Khi đó, bài toán trở thành: Cho $x,y,z>0$. CMR:

\(\frac{xz^2}{2z^2y+xy^2}+\frac{yx^2}{2x^2z+yz^2}+\frac{zy^2}{2y^2x+zx^2}\geq 1\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz:

\(\frac{xz^2}{2z^2y+xy^2}+\frac{yx^2}{2x^2z+yz^2}+\frac{zy^2}{2y^2x+zx^2}=\frac{(xz)^2}{2xyz^2+(xy)^2}+\frac{(xy)^2}{2x^2yz+(yz)^2}+\frac{(yz)^2}{2xy^2z+(xz)^2}\)

\(\geq \frac{(xz+xy+yz)^2}{2xyz^2+(xy)^2+2x^2yz+(yz)^2+2xy^2z+(xz)^2}=\frac{(xy+yz+xz)^2}{(xy+yz+xz)^2}=1\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

28 tháng 5 2020

thank youhaha

9 tháng 7 2019

\(1,\)\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

10 tháng 7 2019

ò, Linh ơi, mình nghĩ bạn làm đúng nhưng mà chỗ dấu ''='' thứ nhất bạn ghi ''4b'' nhưng bước đó bạn phải ghi là ''2b'' tại bước đó chưa có quy đồng, quy đồng mới thành 4b do mẫu chung là \(2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\), chắc bạn hiểu, cảm ơn bạn nhiều nha!

14 tháng 7 2019

\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}-\frac{2b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+b\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{4b\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2-4b\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}\right)-4\sqrt{a}b-4b\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{2\sqrt{a}.2\sqrt{b}-4\sqrt{a}b-4b\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{a}\sqrt{b}-4\sqrt{a}b-4b\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{a}\sqrt{b}\left(1-\sqrt{b}-b\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{2\sqrt{a}\sqrt{b}\left(1-\sqrt{b}-b\right)}{a-b}\)

Đề sai???Phân số thứ 3 nghi là a-b chứ ko phải căn a - căn b????????

3 tháng 9 2018

Áp dụng BĐT cô-si, ta được:

\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)

=>  \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)

=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)

Vậy....

26 tháng 11 2020

Biến đổi tương đương ta được :

\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)

\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )