tìm x,y
xy+3x-2y=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
\(2xy-3x+2y=8\)
\(\Leftrightarrow\left(2xy-3x\right)+\left(2y-3\right)=5\)
\(\Leftrightarrow x\left(2y-3\right)+\left(2y-3\right)=5\)
\(\Leftrightarrow\left(x+1\right)\left(2y-3\right)=5\)
Bảng giá trị:
x+1 | -5 | -1 | 1 | 5 |
2y-3 | -1 | -5 | 5 | 1 |
x | -6 | -2 | 0 | 4 |
y | 1 | -1 | 4 | 2 |
Vậy pt có 4 cặp nghiệm nguyên (x;y)=(-6;1);(-2;-1);(0;4);(4;2)
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{3x+2y-z}{3.4+2.6-8}=\frac{8}{16}=0,5\)
x = 0,5 . 4 = 2
y = 0,5 . 6 = 3
z = 0,5 . 8 = 4
KL:.................
\(\Rightarrow\frac{3x}{12}=\frac{2y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{3x+2y-z}{12+12-8}=\frac{1}{2}\)
=>x=2
y=3
z=4
h này chắc ngủ mơ thấy ma hết rùi bn iu :> thui tui tl cho nè:
\(xy+3x-2y=8\)
\(x.\left(y+3\right)-2.\left(y+3\right)=8-6=2\)
\(\left(x-2\right).\left(y+3\right)=2\)
=> (x-2),(y+3) thuộc Ư(2)={1,-1,2,-2}
Vậy các cặp số (x,y) t/m là (3,-1),(1,-5),(4,-2),(0,-4)