CMR 52019+3 chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9
Vậy ab - ba chia hết cho9
Đính chính câu A, phải cộng với 2 mới chia hết cho 3 (vì tổng số các chữ số bằng 3), nên theo đề cộng cho 3 không phù hợp, bạn xem lại đề câu a.
Câu A
Ta có \(A=10^{2023}⋮10\)
Nên \(A+3⋮3\)
\(\Rightarrow dpcm\)
a) A = 1 + 2 + 22 + 23 + ...... + 239
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)
= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)
= 15 (1 + 24 + ...... + 236 ) \(⋮15\)
Vậy A là bội của 15
b) B = 2 + 22 + 23 + ...... + 22004
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)
= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 22 + 23) + ....... + 22001(1 + 2 + 22 +23)
= 15 (2 + 25 + ..... + 22001) \(⋮15\)
Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)
mà (2; 15) = 1
nên B \(⋮30\)
c) Gọi 3 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5
Ta có: 2k+1 + 2k+3 + 2k+5 = 6k + 9
Ta thấy 6k chia hết cho 6 nhưng 9 ko chia hết cho 6
nên 6k + 9 ko chia hết cho 6
Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6
1. Ta có:1x2x3=6 chia hết cho 6
2x3x4 chia hết cho 6...
Vì vậy có thể CMR liên tiếp chia hết cho 6
2: Cũng như vậy
- 3 số tự nhiên liên tiếp sẽ tồn tại ít nhất 1 số chia hết cho 2, một số chia hết cho 3 nên tích chia hết cho 2*3=6
- 4 số tự nhiên liên tiếp sẽ tồn tại 2 số chẵn liên tiếp. Mà 2 số chẵn liên tiếp thì có một số chia hết cho 4 số kia chia hết cho 2
nên tích chia hết cho 4*2=8
tk mình nha
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4