Tính tổng: S= 1+52+54+...+5200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
a,Tính tổng:S=1+52+54+...+5200
=>52S=52+54+56+...+5202
=>25S-S=24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
b,So sánh 230+330+430 và 3.2410
3.24^10=3^11.4^15
4^30=4^15.4^15
hiển nhiên 4^15>3^11
=>3.24^10<<4^30<<<2^30+3^20+4^30
Ta có: 230+330+430>230+230+430=231+230.230
=231(1+229) (1)
Lại có:3.24^10=3^11.2^30 (2)
So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29
và 2^30<2^31
=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
a: \(25S=25+5^4+...+5^{202}\)
=>24S=5^202-1
hay \(S=\dfrac{5^{202}-1}{24}\)
b:
4^30=2^30*2^30
=(2^3)^10*(2^2)^15>8^10*3^15=(8^10*3^10)*3^5>24^10*3
=>2^30+3^30+4^30>3*24^10
1)Điền các số thích hợp vào các dãy số sau:
a)1;4;7;..10...;...13...;
b)0;1;3;6;10;...15..
c)1;3;7;15;..31...
2)Tính các tổng sau:
a)P=1+4+7+........100
Số các số hạng trong dãy số trên là:
(100-1):3+1=34(số)
Tổng của dãy số trên là:
34.(100+1):2=1717
b)S=50+52+54+.........+200
Số các số hạng trong dãy số trên là:
(200-50):2+1=76(số)
Tổng của dãy số trên là:
76.(200+50):2=9500
1a) 1; 4; 7; 10; 13.
1b) 0; 1; 3; 6; 10; 15.
1c) 1; 3; 7; 15; 31.
2a) P = 1 + 4 + 7 +........100
Số các số hạng trong dãy số trên là:
(100 -1) : 3 + 1 = 34 (số)
Tổng của dãy số trên là:
34 x (100 + 1) : 2 = 1717
2b) S = 50 + 52 + 54 +.........+ 200
Số các số hạng trong dãy số trên là:
(200 - 50) : 2 + 1 = 76 (số)
Tổng của dãy số trên là:
76 x (200 + 50) : 2 = 9500
từ 52 đến 102 có
(102-52) :2 +1=26 số hạng
(102+52)x26:2=2002
vậy tổng của các chữ số 52+54+56+...+102 là 2002
tk cho mình nha
Số số hạng của dãy số đó là :
( 102 - 52 ) : 2 + 1 = 26 ( số )
Tổng các số đó là :
( 102 + 52 ) x 26 : 2 = 2002
Đáp số : 2002
Lời giải:
$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$
$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$
$25C-C=(5^3+5^{102})-(5+1)$
$24C=5^{102}-119$
$C=\frac{5^{102}-119}{24}$
uses crt;
var i,n,s:longint;
begin
clrscr;
readln(n);
s:=0;
for i:=1 to n do
s:=s+sqr((2*i-1));
writeln(s);
readln;
end.
a: \(12+2^2+3^2+4^2+5^2\)
\(=12+4+9+16+25\)
\(=16+50=66\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)
c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)
d: \(18\cdot4^{500}=18\cdot2^{1000}\)
\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)
=>\(18\cdot4^{500}>2^{1004}\)
e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)
\(=2023^{2025}\)