Cho đường thẳng (d): y=\(\dfrac{2mx-2x-2}{m-2}\) với \(m\ne1;m\ne2\)
a) Vẽ (d) với m=-1
b) Tìm m để khoảng cách từ O đến (d) lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{x^2-2x+2m-2}{\left(x-1\right)^2}\)
Hàm có 2 cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}2m-3\ne0\\\Delta'=1-\left(2m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{3}{2}\)
Khi đó, phương trình đường thẳng qua 2 cực trị có dạng:
\(y=\dfrac{2x-2m}{1}=2x-2m\)
Đường thẳng này có cùng hệ số góc với d nên chúng song song nhau
a.
Để hai đường thẳng song song:
\(\Rightarrow\left\{{}\begin{matrix}2m=-\dfrac{1}{3}\\m-1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{1}{6}\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow m=-\dfrac{1}{6}\)
b.
\(-2x-y=5\Leftrightarrow y=-2x-5\)
Để hai đường thẳng trùng nhau:
\(\Leftrightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m=-4\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy ko tồn tại m để 2 đường thẳng trùng nhau
Toi mới làm được câu 2 thoi à :( Mấy câu còn lại để rảnh nghĩ thử coi sao
\(PTHDGD:\dfrac{x+1}{x-1}=2x+m\Leftrightarrow x+1=\left(2x+m\right)\left(x-1\right)\)
\(\Leftrightarrow x+1=2x^2-2x+mx-m\Leftrightarrow2x^2+\left(m-3\right)x-m-1=0\)
De ton tai 2 diem phan biet \(\Leftrightarrow\Delta>0\Leftrightarrow\left(m-3\right)^2+8m+8>0\Leftrightarrow m^2+2m+17>0\Leftrightarrow\left(m+1\right)^2+16>0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{3-m}{2}\\x_1x_2=\dfrac{-m-1}{2}\end{matrix}\right.\)
Vi 2 tiep tuyen tai 2 diem x1, x2 song song voi nhau
\(\Rightarrow f'\left(x_1\right)=f'\left(x_2\right)\)
\(f'\left(x\right)=\dfrac{x-1-x-1}{\left(x-1\right)^2}=-\dfrac{2}{\left(x-1\right)^2}\)
\(\Rightarrow\dfrac{1}{\left(x_1-1\right)^2}=\dfrac{1}{\left(x_2-1\right)^2}\Leftrightarrow x_1^2-2x_1+1=x_2^2-2x_2+1\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-2\left(x_1-x_2\right)=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_2\left(loai\right)\\x_1+x_2=2\end{matrix}\right.\Leftrightarrow\dfrac{3-m}{2}=2\Leftrightarrow m=-1\)
c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)
\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)
hay \(m=-\dfrac{7}{36}\)
Nói chung ta cần tìm m để pt \(x^2-2mx+m+2=2x+2\) có nghiệm
\(\Leftrightarrow x^2-2\left(m+1\right)x+m=0\)
\(\Delta'=\left(m+1\right)^2-m=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)
Phương trình trên luôn luôn có nghiệm hay (P) luôn có điểm thuộc (d) với mọi m
a)Thế m=-1 vào pt, ta có:
\(y=\dfrac{4x+2}{3}\)
Bảng giá trị:
0
X y -1/2 2/3 1 -1 y=(4x+2):3
b)Mình sẽ làm sau!
b: \(y=\dfrac{2mx-2x-2}{m-2}=\dfrac{x\left(2m-2\right)}{m-2}-2\)
\(\Leftrightarrow x\cdot\dfrac{2m-2}{m-2}-y-2=0\)
\(d\left(O;d\right)=\dfrac{\left|\dfrac{2m-2}{m-2}\cdot0+\left(-1\right)\cdot0-2\right|}{\sqrt{\left(\dfrac{2m-2}{m-2}\right)^2+1}}\)
Để d lớn nhất thì \(\sqrt{\left(\dfrac{2m-2}{m-2}\right)^2+1}_{min}\)
=>(2m-2)/(m-2)^2+1 min
\(\left(\dfrac{2m-2}{m-2}\right)^2+1=\left(\dfrac{2m-4+2}{m-2}\right)^2+1\)
\(=4\left(\dfrac{2}{m-2}\right)^2+1>=4\cdot4+1=17\)
Dấu = xảy ra khi m=0