K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(x+y\ge2\sqrt{xy}\) (1)

\(9+xy\ge2\sqrt{9xy}\) (2)

Từ (2) suy ra \(\frac{12xy}{9+xy}\le\frac{12}{2\sqrt{9xy}}=\frac{6}{\sqrt{9xy}}=\frac{6}{3\sqrt{xy}}=\frac{2}{\sqrt{xy}}\)

Ta sẽ chứng minh \(2\sqrt{xy}\ge\frac{2}{\sqrt{xy}}\).Thật vậy,ta có:

Điều cần chứng minh tương đương với: \(2\sqrt{xy}.\sqrt{xy}\ge2\)

hay \(2xy\ge2\) (luôn đúng vì x,y dương)

Suy ra đpcm

P/s: Tuy nhiên ở bài này dấu "=" xảy ra. =,=

20 tháng 11 2018

À nhầm xíu, bắt đầu lại chỗ: "Ta sẽ chứng minh ..."

Ta sẽ chứng minh \(\frac{2\sqrt{xy}}{1}\ge\frac{2}{\sqrt{xy}}\)( \(2\sqrt{xy}=\frac{2\sqrt{xy}}{1}\).Thật vậy,ta có:

Điều cần chứng minh tương đương với: \(\frac{2\sqrt{xy}.\sqrt{xy}}{\sqrt{xy}}\ge\frac{2}{\sqrt{xy}}\)

Hay \(\frac{2xy}{\sqrt{xy}}\ge\frac{2}{\sqrt{xy}}\) - luôn đúng (do x,y dương)

P/s: tuy nhiên dấu "=" không xảy ra ở bài này =((

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Lời giải:

Áp dụng BDDT Cô-si cho các số dương:

\(x+y\geq 2\sqrt{xy}\)

\(9+xy\geq 2\sqrt{9xy}=6\sqrt{xy}\)

\(\Rightarrow (x+y)(9+xy)\geq 2\sqrt{xy}.6\sqrt{xy}=12xy\)

\(\Rightarrow x+y\geq \frac{12xy}{9+xy}\) (đpcm)

Dấu "=" xảy ra khi \(x=y>0; 9=xy\Rightarrow x=y=3\)

NV
13 tháng 6 2020

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

26 tháng 4 2020

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

7 tháng 1 2019

giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn

8 tháng 1 2019

\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)

25 tháng 11 2019
https://i.imgur.com/OrspMQU.jpg
NV
25 tháng 11 2019

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)

Cộng vế với vế:

\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/910328.html