tìm x để \(\frac{3x}{x-3}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
<=> M =
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{4x^2.2}{4x^2\left(x-2\right)}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\frac{6}{\left(x+2\right)\left(x-2\right)}=1+\frac{\left(x+2\right)\left(x-2\right)}{6\left(x+2\right)}=1+\frac{x-2}{6}\)
\(=\frac{x+4}{6}.P=0\Leftrightarrow x=-4\)
\(P>0\Leftrightarrow x>-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n^2>!n!.n\Rightarrow n< 0\)
\(\Leftrightarrow\frac{x^3-3x-2}{x^2+4x+3}=\frac{\left(x+1\right)\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+3\right)}< 0\)
ĐK \(\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)\(N=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)}< 0\)
=>\(\orbr{\begin{cases}-2< x< -1\\x< -3\end{cases}}\)
nhầm
(x+1)^2(x-2)/(x-1)(x+3)<0<=>(x-2)/(x-1)(x+3)<0<=>x<-3 hoặc 1<x<2
(
\(\frac{3x}{x-3}>2\)
\(3x>2\left(x-3\right)\)
\(3x>2x-6\)
\(3x-2x>-6\)
\(x>-6\)
\(ĐKXĐ:x\ne3\)
Ta có \(\frac{3x}{x-3}>2\)
\(\Leftrightarrow3x>2\left(x-3\right)\)
\(\Leftrightarrow3x>2x-6\)
\(\Leftrightarrow x>-6\)
Kết hợp ĐKXĐ ta được \(\hept{\begin{cases}x>-6\\x\ne3\end{cases}}\)