a) 25x2 - 20xy + 4y
b) 1/36a2 - 1/4b2
c) 0.125 (a+2)3 - 1
d) x6 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (a - 2b)x(a + 2b)
b) x2-(y-3)2
=> (x-y+3)(x+y-3)
c) (2a + b - a)(2a + b + a)
=> (a+b)(3a+b)
d) (4(x - 1))2 - (5(x + y))2
⇔ (4x - 4 - 5x - 5y)(4x - 4 + 5x + 5y)
⇔ -(x + 5y + 4)(9x + 5y + -4)
e) (x + 5)2
f) (5x - 2y)2
h) (x - 5)(x2 + 5x + 25)
k) (x + 5)3
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
2) 9x2+ 12x+ 4
<=>(3x)2+ 2.3x.2+ 22 <=>(3x+ 2)2
3) 4x4+ 20x2+ 25
<=>(2x2)2+ 2.2x2.5+ 52 <=>(2x2+5)2
4) 25x2- 20xy+ 4y2
<=> (5x)2- 2.5x.2y+ (2y)2<=> (5x-2y)2
5) 9x4- 12x2y+ 4y2
<=> (3x2)2- 2.3x2.2.y+ (2y)2<=> (3x2- 2y)2
6) 4x4- 16x2y3+ 16y6
<=> (2x2)2- 2.2x2.4y3+ (4y3)2<=> (2x2- 4y3)2
7) 9x4- 12x5+ 4x6
<=> (3x2)2- 2.3x2.2x3+ (2x3)2<=> (3x2- 2x3)2
\(a,36-4x^2+20xy-25y^2\\ =36-\left(4x^2-20xy+25y^2\right)\\ =6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]\\ =6^2-\left(2x-5y\right)^2\\ =\left[6-\left(2x-5y\right)\right]\left[6+\left(2x-5y\right)\right]\\ =\left(6-2x+5y\right).\left(6+2x-5y\right)\)
a/
\(=6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]=\)
\(6^2-\left(2x-5y\right)^2=\left[6-\left(2x-5y\right)\right].\left[6+\left(2x-5y\right)\right]\)
Ta có 25 x 2 – 20 x y + 4 y 2 = ( 5 x ) 2 – 2 . 5 x . 2 y + ( 2 y ) 2 = ( 5 x – 2 y ) 2
Đáp án cần chọn là: A
\(125\left(a+2\right)^3-1\)
\(=\left[5\left(a+2\right)\right]^3-1\)
\(=\left(5a+10\right)^3-1\)
\(=\left(5a+10-1\right)\left[\left(5a+10\right)^2-\left(5a+10\right)+1\right]\)
\(=\left(5a+10-1\right)\left[25a^2+100a+100-5a-10+1\right]\)
\(=\left(5a+9\right)\left[25a^2+95a+91\right]\)
b) \(x^6-1=\left(x^3\right)^2-1=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
a) Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)=35\)
\(\Leftrightarrow x^3+8=35\)
\(\Leftrightarrow x^3=27\)
hay x=3
b) Ta có: \(\left(25x^2+5x+1\right)\left(5x-1\right)=-9\)
\(\Leftrightarrow125x^3-1=-9\)
\(\Leftrightarrow125x^3=-8\)
\(\Leftrightarrow x=-\dfrac{2}{5}\)
a) \(=\left(5x\right)^2-3^2\) \(=\left(5x-3\right)\left(5x+3\right)\)
b) \(=8^2-\left(x-7\right)^2\) \(=\left(8-x+7\right)\left(8+x-7\right)\) \(=\left(15-x\right)\left(x+1\right)\)
c) \(=1-100a^2b^2\) \(=1-\left(10ab\right)^2\) \(=\left(1-10ab\right)\left(1+10ab\right)\)
d) Mình sửa đề chút nhé! Đề như trên thì không phân tích thành nhân tử được :)
\(x^2-6x+8\)
\(=x^2-2x-4x+8\) \(=x\left(x-2\right)-4\left(x-2\right)\) \(=\left(x-2\right)\left(x-4\right)\)
\(a,Sửa:25x^2-20xy+4y^2=\left(5x-2y\right)^2\\ b,=\dfrac{1}{4}\left(\dfrac{1}{9}a^2-b^2\right)=\dfrac{1}{4}\left(\dfrac{1}{3}a-b\right)\left(\dfrac{1}{3}a+b\right)\\ c,=\dfrac{1}{8}\left(a+2\right)^3-1=\left[\dfrac{1}{2}\left(a+2\right)\right]^3-1=\left[\dfrac{1}{2}a+1\right]^3-1\\ =\left(\dfrac{1}{2}a+1-1\right)\left(\dfrac{1}{4}a^2+a+1+\dfrac{1}{2}a+1+1\right)\\ =\dfrac{1}{2}a\left(\dfrac{1}{4}a^2+\dfrac{3}{2}a+3\right)\\ d,=\left(x^3-1\right)\left(x^3+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)