/3x-5/+(2y-8)20+(4z-3)2018<=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\le0\)
ta có:
\(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+8\right)^{20}\ge0\\\left(4z-3\right)^{2018}\ge0\end{cases}}\Rightarrow\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\ge0\)
mà \(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\le0\)=> \(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}=0\)
=> \(\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+8\right)^{20}=0\\\left(4z-3\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-4\\z=\frac{4}{3}\end{cases}}\)
vậy \(x=\frac{5}{3},y=-4,z=\frac{4}{3}\)
bạn nên có một bước giải thích vì sao
(2y+8)\(\ge0\)
\(|3x-5|\ge0\)
\((4z-3)\ge0\)
\(\left(2x-1\right)^2+\left(y-3\right)^8+\left(z-5\right)^{20}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\\z-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\\z=5\end{matrix}\right.\)
Ta có: \(\left|3x-5\right|\ge0\forall x\)
\(\left(2y+5\right)^{20}\ge0\forall y\)
\(\left(4z-3\right)^{206}\ge0\forall z\)
Do đó: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Sửa đề \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\le0\)
Mà \(\left|3x-5\right|\ge0\);\(\left(2y+5\right)^{208}\ge0;\left(4x-3\right)^{20}\ge0\)
Do đó \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Bài giải
\(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}\le0\)
Mà \(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+5\right)^{2008}\ge0\\\left(4z-3\right)^{2006}\ge0\end{cases}}\) \(\Rightarrow\) Chỉ xảy ra trường hợp : \(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}=0\)
\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+5\right)^{2008}=0\\\left(4z-3\right)^{2006}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x=5\\2y=-5\\4z=3\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)
\(\Rightarrow\text{ }x=\frac{5}{3}\text{ , }y=-\frac{5}{2}\text{ , }z=\frac{3}{4}\)
\(A=\dfrac{12x^3y^4z^5}{4x^2y^3z^4}=3xyz=3\cdot3\cdot3\cdot2018=54486\)
Sửa đề:
Tìm x;y;z biết\(\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\le0\)
Ta có: \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left(2y-8\right)^{20}\ge0\forall y\\\left(4z-3\right)^{2018}\ge0\forall z\end{cases}}\)
\(\Rightarrow\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\ge0\)
Mà \(\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\le0\)
\(\Rightarrow\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}=0\)
\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y-8\right)^{20}=0\\\left(4z-3\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\2y-8=0\\4z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=4\\z=\frac{3}{4}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{5}{3}\\y=4\\z=\frac{3}{4}\end{cases}}\)
Tham khảo nhé~