So sánh không dùng máy tính:
12^7 và 9^13
giúp vs nha ><
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1+1/1.2+1+1/2.3+....+1+1/9.10
a=1+1+...+1(9 chữ số 1) +1/1-1/2+1/2-1/3+..+1/9-1/10
a=9+1-1/10
a=9+9/10=9+0.9=9.9
b=98/11<98/10=9.8<9.9.
vậy a>b
Ta có: a=1+1/2+1+1/6+1+1/12+...+1+1/90=9+1/2+1/6+...+1/90 > 9>99/11> b. Vậy, a>b
a) ta thấy -59/1310 <0 còn -1/-9=1/9 nên > 0. Vì vậy phân số -1/-9> -59/1310
b)-3/7<0 còn -1/-5> 0 nên -3/7<-1/-5
c) ta có:13/17 <1 còn -23/-27=23/27> 1nen -23/-27>13/17
Ta có: 11 < 16 ⇒ 11 < 16 ⇒ 11 < 4
Suy ra: -3. 11 > -3.4
Vậy -3 11 > -12
Với 0 ° < α < 90 ° ta có α tăng thì cotg α giảm
Ta có: 14 ° < 35 ° 12 ' , suy ra cotg 14 ° > cotg 35 ° 12 '
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
a)1 và \(\sqrt{3}-1\)
Ta có:
\(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)
Vậy 1 > \(\sqrt{3}-1\)
a) ta có \(\sqrt{3-1}\)=\(\sqrt{2}\)
vì 1<2=>\(\sqrt{1}\)<\(\sqrt{2}\)
b)ta có 10=\(\sqrt{100}\)và \(2\sqrt{31}\)=\(\sqrt{124}\)
vì 100<124=>\(\sqrt{100}\)<\(\sqrt{124}\)hay \(2\sqrt{31}\)>10
c)ta có -12=\(-3\sqrt{16}\)
vì 11<16=>\(\sqrt{11}\)<\(\sqrt{16}\)=>\(-3\sqrt{11}\)>\(-3\sqrt{16}\) (vì nhân với số âm)hay\(-3\sqrt{11}\)>-12
6+2 2 và 9
Ta có: 9 = 6 + 3
So sánh: 2 2 và 3 vì 2 2 > 0 và 3 > 0
Ta có: 2 2 2 = 2 2 . 2 2 =4.2=8
3 2 = 9
Vì 8 < 9 nên : 2 2 2 < 3 2
Vậy 6+2 2 < 9.
9 + 4 5 và 16
So sánh 4 5 và 5
Ta có: 16 > 5 ⇒ 16 > 5 ⇒ 4 > 5
Vì 5 > 0 nên 4. 5 > 5 . 5 ⇒ 4 5 > 5 ⇒ 9 + 4 5 > 5 + 9
Vậy 9 + 4 5 > 16
- Nhận xét 1 3 - 2 = 3 + 2
- Đặt a = 5 và b = 5 + 1.
- Đưa về so sánh a 2 với b 2 hay 5 + 2 6 với 6 + 2 5
- Đưa về so sánh a 2 – 5 với b 2 – 5 hay so sánh 2 6 với 1 + 2 5
- Đưa về so sánh a 2 - 5 2 với b 2 - 5 2 hay so sánh 24 với 21 + 4 5
- Có thế chứng tỏ được 24 < 21 + 4 5 (vì 3 < 4 5 ⇔ 3 < 80 )
- Từ kết quả 3 < 80 suy luận ngược lại, suy ra 1 3 - 2 < 5 + 1.
\(12^7=4^7.3^7=\left(2^2\right)^7.3^7=2^{14}.3^7\)
\(9^{13}=\left(3^2\right)^{13}=3^{26}=3^{19}.3^7\)
Mà \(\left\{{}\begin{matrix}3>2\\19>14\end{matrix}\right.\) \(\Rightarrow3^{19}>2^{14}\) \(\Rightarrow9^{13}>12^7\)