Tìm x để các phân thức = 0
a) \(A=\frac{5x-10}{1-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, => \(2x-1=0\)
<=>\(2x=1\)
<=> \(x=\frac{1}{2}\)
V...........
b, => \(x^2-x=0\)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
V......
c, =>\(x^2-1=0\)
<=> \(x^2=1\)
<=> \(x=1\)
V........
HOK TỐT NHA ^^
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b) Để phân thức bằng 1 thì :
\(5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy.......
Phân thức xác định
\(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định
ĐKXĐ : \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow x\ne0;x\ne-2\left(1\right)}\)
Ta có P = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2\left(x+5\right)}\)
c) P = 1
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=1\Rightarrow x^2+4x+5=2\left(x+5\right)\)
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 + 2x - 5 = 0
=> x2 + 2x + 1 - 6 = 0
=> (x + 1)2 = 6
=> \(\orbr{\begin{cases}x+1=\sqrt{6}\\x+1=-\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)(tm (1))
d) P = -1/2
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=-\frac{1}{2}\)
=> 2(x2 + 4x + 5) = -2(x + 5)
=> 2x2 + 8x + 10 = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2(x2 + 5x + 10) = 0
=> x2 + 5x + 10 = 0
=> \(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}=0\)
=> \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\)
=> \(x\in\varnothing\left(\text{Vì }\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\forall x\right)\)
Vậy không tồn tại x để P = -1/2
\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
a) ĐK : x ≠ 0 ; x ≠ -5
b) \(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2x+10}\)
c) Để P = 1
thì \(\frac{x^2+4x+5}{2x+10}=1\)
=> x2 + 4x + 5 = 2x + 10
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 - 2x - 5 = 0
=> ( x2 - 2x + 1 ) - 6 = 0
=> ( x - 1 )2 - ( √6 )2 = 0
=> ( x - 1 - √6 )( x - 1 + √6 ) = 0
=> x = 1 + √6 hoặc x = 1 - √6
Cả hai giá trị đều thỏa x ≠ 0 ; x ≠ -5
Vậy x = 1 + √6 hoặc x = 1 - √6
d) Để P = -1/2
thì \(\frac{x^2+4x+5}{2x+10}=\frac{-1}{2}\)
=> 2( x2 + 4x + 5 ) = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2( x2 + 5x + 10 ) = 0
=> x2 + 5x + 10 = 0 (*)
Ta có : x2 + 5x + 10 = ( x2 + 5x + 25/4 ) + 15/4 = ( x + 5/2 )2 + 15/4 ≥ 15/4 > 0 ∀ x
tức (*) không xảy ra
Vậy không có giá trị của x để P = -1/2
Đặt \(\frac{5x+5}{2x^2+2x}=A\)
a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)
TXĐ:\(x\ne0;x\ne-1\)
b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)
Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Rightarrow x=\frac{2}{5}\)( TM )
\(a,\frac{5x+5}{2x^2+2x}=\frac{5x+5}{2x\left(x+1\right)}\)XÁc định
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}2x\ne0\\x+1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
x=2 nha bạn x
+-1/2+là khác