Tìm điều kiện xác định
b) \(B=\frac{2018}{x^2-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ:
\(\left\{\begin{matrix} x-1\geq 0\\ 2\geq \sqrt{x-1}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 4\geq x-1\end{matrix}\right. \Leftrightarrow 5\geq x\geq 1\)
b. ĐKXĐ:
\(\left\{\begin{matrix} x\geq 0\\ 3\geq \sqrt{x}\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
A xác định khi 5x-10 ≠0 <=> X ≠ 2b) A = x²-4x+4/5x-10= (x-2)²/5(x-2)= x-2/5c) x= -2018<=> A = -2018-2/5= -2020/5 = -404
Chúc bạn học tốt
a) ĐKXĐ: \(x\ne2\)
b) Ta có: \(A=\dfrac{x^2-4x+4}{5x-10}\)
\(=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}\)
\(=\dfrac{x-2}{5}\)
\(A\)xác định
\(\Leftrightarrow3x^2+4x-15\ne0\)
\(\Leftrightarrow\left(3x^2+9x\right)-\left(5x+15\right)\ne0\)
\(\Leftrightarrow3x\left(x+3\right)-5\left(x+3\right)\ne0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-5\right)\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne3\\x\ne\frac{5}{3}\end{cases}}\)
Vậy với \(\orbr{\begin{cases}x\ne3\\x\ne\frac{5}{3}\end{cases}}\)thì \(A\)xác định
Tham khảo nhé~
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
a) ĐKXĐ: x khác +-1
b) \(\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{x^2-1}\)
\(=\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2+\left(x-2\right)\left(x-1\right)-\left(2x^2+x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-\frac{2}{x-1}\)
ĐKXĐ :
\(x^2-4\ne0\)
=> \((x-4)\left(x+4\right)\ne0\)
=> \(\hept{\begin{cases}x-4\ne0\\x+4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne4\\x\ne-4\end{cases}}}\)
Để \(B=\frac{2018}{x^2-4}\)xác định
thì \(x^2-4\ne0\)
\(\Rightarrow x^2\ne4\)
\(\Rightarrow x\ne\pm2\)
Vậy với \(x\ne\pm2\)thì \(B=\frac{2018}{x^2-4}\)xác định