Tìm GTLN
B= 7 -x^2 +5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )
a. A=|x-2|+x+5
Vì |x-2| ≥0
=>|x-2|+x+5≥x+5
Vậy GTNN của A=x+5 khi x-2=0
=> x=2
Vậy GTNN của A =2+5=7
Khi x=2
Hok tốt!!!!!
a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...
a/ M = -x2 - 2x + 7 = -(x2 + 2x - 7) = -(x2 + 2 . x + 1 - 8) = -[ (x + 1)2 - 8] = -(x + 1)2 + 8 \(\le\)8
Đẳng thức xảy ra khi: -(x + 1)2 = 0 => x = -1
Vậy giá trị lớn nhất của M là 8 khi x = -1
b/ N = -x2 + 4x + 5 = -(x2 - 4x - 5) = -(x2 - 2 . 2x + 22 - 9) = -[ (x - 2)2 - 9] = -(x - 2)2 + 9 \(\le\)9
Đẳng thức xảy ra khi: -(x - 2)2 = 0 => x = 2
Vậy giá trị lớn nhất của N là 9 khi x = 2
Ta có : \(\left|x-\frac{4}{7}\right|\) \(\ge0\forall x\in R\)
=> \(-\left|x-\frac{4}{7}\right|\)\(\le0\forall x\in R\)
=> \(-\left|x-\frac{4}{7}\right|+\frac{5}{9}\le\frac{5}{9}\forall x\in R\)
Vậy GTLN của B là : \(\frac{5}{9}\) tại x = \(\frac{4}{7}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a) A = |x - 3| + 10
Vì |x - 3| >= 0
=> A = |x - 3| + 10 >= 10
A = 10 <=> |x - 3| = 0=> x - 3 = 0 => x = 3
Vậy: Amin = 10 <=> x = 3
b) B = -7 + (x - 1)2
Vì (x - 1)2 >= 0
=> B = -7 + (x - 1)2 >= -7
B = -7 <=> (x - 1)2 = 0 => x - 1 = 0 => x = 1
Vậy: Bmin = -7 <=> x = 1
để B lớn nhất => 7-x2+5 lớn nhất
=> x2 bé nhất
vì \(x^2\ge0\)
dấu "=" xảy ra khi và chỉ khi x2=0 => x=0
Vậy GTLN của B=12 khi và chỉ khi x=0