K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2015

ta có (2x-1)2+ /2y-x/ = 0

suy ra (2x-1)2 = 0      và                 /2y-x/ =0

        2x-1 = 0                      2y-x =0

        2x     = 0+1=1             2y-1/2=0  

           x      = 1/2                2y      = 0+1/2=1/2 

                                             y     = 1/2  /2

                                              y     =1/4         

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

8 tháng 12 2024

a) 

x 1 -1 12 -12 2 -2 6 -6 3 -3 4 -4
y-3 -12 12 -1 1 -6 6 -2 2 -4 4 -3 3
y -9 15 2 4 -3 9 1 5 -1 7 0 6

b)

x 1 -1 3 -3 7 -7 21 -21
y -21 21 -7 7 -3 3 -1 1

c)

2x-1 1 -1 5 -5 7 -7 35 -35
2y+1 -35 35 -7 7 -5 5 -1 1
x 1 0 3 -2 4 -3 18 -17
y -18 17 -4 3 -3 2 -1 0

e)

2x+1 1 -1 5 -5 11 -11 55 -55
3y-2 -55 55 -11 11 -5 5 -1 1
x 0 -1 2 -3 5 -6 27 -28
y loại 19 -3 loại -1 loại loại 1

Những câu còn lại mk hổng bt làm đâu

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$|4-x|\geq 0$ với mọi $x$

$|2y+1|\geq 0$ với mọi $y$

Do đó để $|4-x|+|2y+1|=0$ thì $|4-x|=|2y+1|=0$

$\Leftrightarrow x=4; y=\frac{-1}{2}$

2.

$|x-3|=|5-2x|$

$\Leftrightarrow x-3=5-2x$ hoặc $x-3=2x-5$

$\Leftrightarrow x=\frac{8}{3}$ hoặc $x=2$

12 tháng 7 2021

 1 )  | 4 - x | + | 2y +1 | = 0  

Trường hợp 1Trường hợp 2
x+1=02y-4=0
x=0-12y=0+4
x=-12y=2=>y=2

 

12 tháng 3 2016

      2x2 + 2y2 -2xy+2x+2y+2=0

<=>x2-2xy+y2+x2+2x+1+y2+2y+1=0

<=>(x-y)2+(x+1)2+(y+1)2=0

<=>x=-1;y=-1

12 tháng 3 2016

còn x2016+a chia hết cho x-1 khi a =-1.đúng chuẩn

mik ko bít

I don't now

................................

.............

24 tháng 9 2018

a,Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(2y-5\right)^4\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2\ge0\forall x,y\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{5}{2}\end{cases}}}\)

=.= hok tốt!!

24 tháng 9 2018

b, Vì: \(\left(2x+3\right)^2\ge0\forall x\)

\(\left(x+2y-3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(2x+3\right)^2+\left(x+2y-3\right)^2\ge0\forall x,y\)

Mà: \(\left(2x+3\right)^2+\left(x+2y-3\right)^2< 0\)

=> Ko có giá trị của x , y thỏa mãn

=.= hok tốt!!

19 tháng 11 2016

2x2y - x2 -2y - 2 = 0

=>2x2y-x2-2y+1 = 3

=>(2x2y-x2)-(2y-1)=3

=>x2(2y-1)-(2y-1)=3

=>(x2-1)(2y-1)=3

=>x2-1 và 2y-1 thuộc Ư(3)={3;1;-1;-3}

Xét x2-1=3 =>x2=4 =>x=±2 =>2y-1=1 =>y=1

Xét x2-1=1 =>x2=2 (Loại vì x,y nguyên)

Xét x2-1=-1 =>x2=0 =>x=0 =>2y-1=-3 =>y=-1

Xét x2-1=-3 =>x2=-2 (Loại vì bình phương 1 số luôn \(\ge\)0>-2)

Vậy với x=±2 thì y=1 với x=0 thì y=-1

 

20 tháng 3 2022

⇔2x2−x+1=xy+2y⇔2x2−x+1=xy+2y

⇔2x2−x+1=y(x+2)⇔2x2−x+1=y(x+2)

⇔y=2x2−x+1x+2=2x−5+11x+2⇔y=2x2−x+1x+2=2x−5+11x+2

Do y nguyên ⇒11x+2⇒11x+2 nguyên ⇒x+2=Ư(11)⇒x+2=Ư(11)

Mà x nguyên dương ⇒x+2≥3⇒x+2=11⇒x=9⇒x+2≥3⇒x+2=11⇒x=9

⇒y=14⇒y=14

Vậy (x;y)=(9;14)