K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

gọi a \(\in\) ƯC\(\left(\frac{n\left(n+1\right)}{2};2n+1\right)\)(a\(\in\) N*) => \(\frac{n\left(n+1\right)}{2}\)​chia hết cho a hoặc n(n+1) chia hết cho a và 2n+1 chia hết cho a

=> n(2n+1)-n(n+1)=2n2+n-n2+n=n2+(n2+n-n2+n)= n2 chia hết cho a

từ n(n+1)=n2+n chia hết cho a và n2 chia hết cho = > n chia hết cho a

mà 2n+1 chia hết cho a, n chia hết cho a => 2n chia hết cho a, do đó 1 chia hết cho a => a=1

vậy U7CLN = 1 viết tắt luôn tự hiểu nhé

tick

19 tháng 11 2018

Gọi UCLN (A;B) là : d

=> \(A⋮d\)

\(\Rightarrow\frac{n^2}{2}+\frac{n}{2}⋮d\)

\(\Rightarrow\frac{4}{n}\left(\frac{n^2}{2}+\frac{n}{2}\right)⋮d\)

\(\Rightarrow2n+2⋮d\)

\(\Rightarrow2n+2-2n-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy...............

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0

gọi d \(d\inưc\left(\frac{n\left(n+1\right)}{2},2n+1\right)\)thì \(n\left(n+1\right)⋮d\)và \(2n+1⋮d\)

\(\Rightarrow n\left(2n+1\right)-n\left(n+1\right)⋮d\)tức là \(n^2⋮d\)

từ \(n\left(n+1\right)⋮d\) và \(n^2⋮d\Rightarrow n⋮d\)ta lại có \(n2+1⋮d\), do đó\(1⋮d\)nên \(d=1\)

vậy ƯCLN CỦA\(\frac{n\left(n+1\right)}{2}\)\(2n+1=1\)

1 tháng 1 2019

gọi d thuộc ƯC(n(n+1)/2 ; 2n+1) với d thuộc N*

=>n(n+1)/2 chia hết cho d hay n.(n+1) chia hết cho d và 2n+1 chia hết cho d

=>n(2n+1)-n(n+1) chia hết cho d

=>2n^2+n-n^2+n chia hết cho d  =>n^2+(n^2+n-n^2+n) chia hết cho d

                                                   =>n^2 chia hết cho d

TỪ n.(n+1)=n^2+n chia hết cho d và n^2 chia hết cho d  =>n chia hết cho d

Ta lại có 2n+1 chia hết cho d,mà n chia hết cho d=>  2n chia hết cho d  =>1 chia hết cho d  =>d=1

3 tháng 4 2017

Gọi \(d=ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)\)

=> \(\frac{n\left(n+1\right)}{2}⋮d\)

\(2n+1⋮d\)

=>\(n\left(n+1\right)⋮d\)

\(2n+1⋮d\)

=> \(n^2+n⋮d\)

\(2n+1⋮d\)

=>\(2.\left(n^2+n\right)⋮d\)

\(n.\left(2n+1\right)⋮d\)

=>\(2n^2+2n⋮d\)

\(2n^2+n⋮d\)

=>\(\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)

=>\(n⋮d\)

=>\(2n⋮d\)

=> \(\left(2n+1\right)-2n⋮d\)

=> \(1⋮d\)

=> d=1

Vậy \(ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)=1\)

4 tháng 11 2015

a) Sai đề, Phải là \(\frac{n.\left(n+1\right)}{2}\)

b) Sai đề. Phải là theo nguyên lý Đi-rích-lê 

26 tháng 5 2015

Gọi \(d\inƯC\left(\frac{n\left(n+1\right)}{2};2n+1\right)\) (d \(\in\) N*) \(\Rightarrow\) \(\frac{n\left(n+1\right)}{2}\)⋮ d hay n(n + 1) ⋮ d và 2n + 1 ⋮ d.

Suy ra n(2n + 1) - n(n + 1) = 2n2 + n - n2 + n = n2 + (n2 + n - n2 + n) = n2 ⋮ d.

Từ n(n + 1) = n2 + n ⋮ d và n2 ⋮ d \(\Rightarrow\) n ⋮ d.

Ta lại có 2n + 1 ⋮ d , mà n ⋮ d \(\Rightarrow\) 2n ⋮ d , do đó 1 ⋮ d.  \(\Rightarrow\) d = 1

                Vậy ƯCLN của \(\frac{n\left(n+1\right)}{2}\) và 2n + 1 là 1. 

24 tháng 12 2021

Sai còn đòi làm ngu như bò

28 tháng 11 2015

c) Gọi d là ƯCLN(n; n+2)

=> n chia hết cho d

=> n+2 chia hết cho d

<=> n+2 -n chia hết cho d

=> 2 chia hết cho d

=> d=1 hoăc d=2

=> ƯCLN(n;n+2) là 2

Vậy...