cho đa thức f(x)=ax^2+bx+c.trong đó p=abc là 1 số nguyên tố cmr đa thức f(x) ko có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(1\right)=a+b+c\text{⋮7 }\)
\(f\left(2\right)=4a+2b+c⋮7\)
\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)
\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)
Mà \(3a+b⋮7\)
\(\Rightarrow c⋮7\)
Mà \(a+b+c⋮7\)
\(\Rightarrow a+b⋮7\)
Mà \(4a+2b+c⋮7\)
\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)
\(2\text{̸ ⋮̸7}\)
\(\Rightarrow2a+b⋮7\)
Mà \(a+b⋮7\)
\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)
Có \(a⋮7;c⋮7;a+b+c⋮7\)
\(\Rightarrow b⋮7\)
\(f\left(m\right)=am^2+bm+c\)
Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)
\(\Rightarrow a.x^2+bx+c⋮7\)
Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)
tìm a,b,c từ F(1),F(-2)=f(3)=2036
ta dc F(x)=4x^2+-4x+2012=[(2x)^2-2(2x).1+1]+2011
=(2x-1)^2+2011
ta thấy \(\left(2x-1\right)^2\ge0\)
(2x-1)\(^2\)+2011\(\ge\)2011
suy ra F(x)\(\ne\)0
vậy f(x) vô nghiệm
theo vi ét
x1.x2=a/c
suy ra 1.-1=a/c
suy ra a/c=-1
vì -1<0 nên a,c trái dấu
ko hiểu