Tính:
x=\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{16-8\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+3\left(\sqrt{5}\right)^2-\left(\sqrt{5}\right)^3}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=\(1-\sqrt{5}\)
làm tương tự: \(\sqrt[3]{16+8\sqrt{5}}\)=\(1+\sqrt{5}\)
suy ra: a = 2
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)
Ta có \(a^3+b^3=32\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)
\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)
\(\Rightarrow ab=-4\)
Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)
\(\Rightarrow a+b=2=x\)
Thay \(x=2\)vào \(f\left(x\right)\)ta được :
\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)
Chúc bạn học tốt !!!
\(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
\(\Leftrightarrow a^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\cdot a\)
\(\Leftrightarrow a^3=32+3\sqrt[3]{256-320}\cdot a\)
\(\Leftrightarrow a^3=32-12a\)
Giải pt được \(a=2\).
Khi đó : \(P\left(a\right)=\left(2^2+12\cdot2-31\right)=-3\)
Vậy...
Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)
Ta có: a3 + b3 = 32
=> (a + b)3 - 3ab(a + b) = 32 (*)
a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)
=> ab = -4
Kết hợp với (*) => (a + b)3 + 12(a + b) = 32
=> a + b = 2 = x
Thay x = 2 vào f(x) ta được:
\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)
\(x=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)
\(\Rightarrow x^3=32+3\sqrt[3]{16^2-8^2.5}\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\right)\)
\(\Rightarrow x^3=32-12x\)
\(\Rightarrow x^3+12x-32=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+16\right)=0\)
\(\Rightarrow x=2\)
Vậy \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}=2\)
x=3√16−8√5+3√16−8√5x=16−853+16−853
⇒x3=32+33√162−82.5(3√16−8√5+3√16+8√5)⇒x3=32+3162−82.53(16−853+16+853)
⇒x3=32−12x⇒x3=32−12x
⇒x3+12x−32=0⇒x3+12x−32=0
⇒(x−2)(x2+2x+16)=0⇒(x−2)(x2+2x+16)=0
⇒x=2⇒x=2
Vậy 3√16−8√5+3√16+8√5=2
\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)
\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)
đến đây dễ r
\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)
\(x^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+5\sqrt{5}}\right)=32+3\sqrt[3]{256-320}.x=32-12x\)
<=> x3 +12x - 32 = 0
<=> x = 2
lập phương lên là đc