cmr:\(n^4-n^2⋮12\forall n\in N\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PK
\(CMR:\forall m,n\in Z\)
\(a)n^2\times(n^2-1)⋮12\)
\(b)n^2\times(n^4-1)⋮60\)
\(c)mn\times(m^4-n^4)⋮30\)
0
NT
0
S
2
29 tháng 1 2019
\(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2+1\right)\left(n^2-1\right)+5n\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\) chia hết cho 5
HN
1
16 tháng 11 2022
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 210
n4 - n2 = n2(n2 - 1) = n2(n - 1)(n + 1)
Vì n, n - 1, n + 1 là 3 số nguyên liên tiếp => có ít nhất 1 số chia hết cho 3 => (n - 1)n(n + 1) ⋮ 3 => n2(n - 1)(n + 1) ⋮ 3 (1)
Vì n, n - 1, n + 1 là 3 số nguyên liên tiếp => có ít nhất một số chia hết cho 2.
Giả sử số chia hết cho 2 đó là n - 1 => n + 1 cũng chia hết cho 2 => (n -1)(n + 1) ⋮ 4 => n2(n - 1)(n + 1) ⋮ 4
Nếu số chia hết cho 2 đó là n + 1, lập luận tương tự ta cũng có n2(n - 1)(n + 1) ⋮ 4
Nếu n ⋮ 2 => n2 ⋮ 4 => n2(n - 1)(n + 1) ⋮ 4
Như vậy n2(n - 1)(n + 1) ⋮ 4 (2)
Từ (1) và (2) => n4 - n2 ⋮ 3 và 4 mà ƯCLN(3;4) = 1
=> n4 - n2 ⋮ 12