Cho a \(⋮\)b và b\(⋮\)a. Chứng tỏ rằng a\(\equiv\)b
Giúp mk nha mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a < b
Ta có:
a + b < b + b = 2b < a.b ( vì a > 2)
=> a + b < a.b ( đpcm)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= (2 + 22 + 23 + 24) + 24.(2 + 22 + 23 + 24) + ... + 256.(2 + 22 + 23 + 24)
= 30 + 24.30 + ... + 256.30
= 30."(1 + 24 + ... + 256)
= 5.6.(1 + 24 + ... + 256) \(⋮\)5
=> \(A⋮5\left(\text{đpcm}\right)\)
Ta có : A = 2 + 22 + 23 + ... + 260
2A = 22 + 23 + ... + 260 + 261
2A - A = 261 - 2
A = 261 - 2
Vì 261 - 2 = 24x15+1 - 2 = ( 24)15 x 2 - 2 = 1615 x 2 - 2 = ....6 x 2 - 2 = ....2 - 2 = ....0
Mà ....0 chia hết cho 5
261 - 2 chia hết cho 5
2 + 22 + 23 + ... + 260 chia hết cho 5 ( đpcm )
Vậy A chia hết cho 5
D = (a + c) - (b + d) = a + c - b - d = (a - d) + (c - b) = C
=> D = C
Chúc bạn học tốt.
\(D=\left(a+c\right)-\left(b+d\right)\)
\(=a+c-b-d\)(1)
\(C=\left(a-d\right)+\left(c-b\right)\)
\(=a-d+c-b\)
\(=a+c-b-d\)(2)
từ (1) và (2) => đpcm
Ta có: \(a⋮b;b⋮a\left(a,b\ne0;a\ge b,b\ge a\right)\).
=> nếu a = b thì ví dụ a = 8, b = 8 thì a : b = 8 : 8 = 1; b : a = 8 : 8 = 1.
Vậy khi 2 số chia hết cho nhau thì phải bằng nhau => a = b.