K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Tui cũng là ARMY nè!!!!!!!!

\(-x+\sqrt{x}-2005+\sqrt{2006}\\ \Leftrightarrow-x+2\dfrac{\sqrt{x}}{2}-\dfrac{1}{4}-\dfrac{8019}{4}+\sqrt{2006}\\ \Leftrightarrow-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{8019}{4}+\sqrt{2006}\le-\dfrac{8019}{4}+\sqrt{2006}\)

Vậy GTLN là\(-\dfrac{8019}{4}+\sqrt{2006}\) khi x=1/2

29 tháng 10 2018

cảm ơn cậu nhá! thật sự thì sau khi đăng xong thì tui lại biết làm :v

13 tháng 9 2017

Sửa đề:

\(VP=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

Ta có: \(2005^2+1=\left(2005+1\right)^2-2.2005.1=2006^2-2.2005\)

\(\Rightarrow VP=\sqrt{2006^2-2.2005+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

\(=\sqrt{\left(2006-\dfrac{2005}{2006}\right)^2}+\dfrac{2005}{2006}\)

\(=2006-\dfrac{2005}{2006}+\dfrac{2005}{2006}=2006\)

Phương trình đã cho tương đương

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2006\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2006\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

Đến đây thì tự xét trường hợp và giải tìm nghiệm, bài này không cần điều kiện nhé

NV
20 tháng 11 2018

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)

2 tháng 7 2015

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

Đặt\(\sqrt{x-2006}=a\)

=> \(A=\frac{a+2019-1}{a+2019}=1-\frac{1}{a+2019}\)

Để A đạt GTNN => a+2019 bé nhất, mà \(a+2019=\sqrt{x-2006}+2019\)

=> x-2006=0=> x=2006,lúc đó A=\(\frac{2018}{2019}\)

Vậy GTNN của A=\(\frac{2018}{2019}\)khi x=2006

15 tháng 4 2019

do x lớn hơn hoặc = 2006

=> x-2006 lớn hơn hoặc = 0

vậy A lớn hơn hoặc bằng 2008/2009

dấu = xảy ra khi x=2006

30 tháng 4 2017

Điều kiện \(x^2-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

Đặt \(x-\sqrt{x^2-1}=a\) thì ta có pt trở thành:

\(\left(1+a\right)^{2005}+\left(1+\dfrac{1}{a}\right)^{2005}=2^{2006}\)

Ta có:

\(\left(1+a\right)^{2005}+\left(1+\dfrac{1}{a}\right)^{2005}\ge2^{2005}\left(\sqrt{a^{2005}}+\dfrac{1}{\sqrt{a^{2005}}}\right)\ge2^{2006}\)

Đấu = xảy ra khi a = 1 hay

\(x-\sqrt{x^2-1}=1\)

\(\Leftrightarrow x=1\)

26 tháng 10 2019

\(A=\left(x-\sqrt{x}+\frac{1}{4}\right)-\frac{1}{4}\)

\(A=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)Dấu "=" xảy ra khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

\(B=\left(\left(x-2005\right)-\sqrt{x-2005}+\frac{1}{4}\right)+\frac{8019}{4}\)

\(B=\left(\sqrt{x=2005}-\frac{1}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x-2005}=\frac{1}{2}\Rightarrow x-2005=\frac{1}{4}\Leftrightarrow x=\frac{8021}{4}\)