Cho x-y=4 tính giá trị biểu thức
\(A=x^3-12xy-y^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=4\)\(\Leftrightarrow\left(x-y\right)^3=4^3\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3=64\)
\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=64\)
\(\Leftrightarrow x^3-y^3-3xy.4=64\)
\(\Leftrightarrow x^3-y^3-12xy=64\)
\(\Leftrightarrow\)Voi \(x-y=4\Leftrightarrow A=64\)
A = x3 - 12xy - y3 = ( x - y )( x2 + xy + y2 ) - 12xy
= 4x2 + 4xy + 4y2 - 12xy = 4x2 - 8xy + 4y2
= 4( x2 - 2xy + y2 ) = 4( x - y )2 = 64
\(\left(2xy^2-5y^3\right):y^2+\left(12xy+6x^2\right):3x\)
\(=\dfrac{y^2\left(2x-5y\right)}{y^2}+\dfrac{3x\left(4y+2x\right)}{3x}\)
\(=2x-5y+4y+2x\)
\(=4x-y\)
Thay x=-3, y=-12 vào biểu thức ta có:
\(4\cdot-3-\left(-12\right)=0\)
Vậy: ...
\(A=\dfrac{2xy^2-5y^3}{5y}+\dfrac{12xy+6x^2}{3x}\)
=2/5xy-y^2+4y+2x
Khi x=-3 và y=-12 thì A=2/5*(-3)*(-12)-144+4*(-12)+2*(-3)
=-183,6
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
a) Thay x = -1 và y = 3 vào A, ta được :
A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3
A = -2.2 + 1 + 4
A = -4 + 5
A = 1
b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
*Thay x =-1 và y = 3 vào biểu thức :
Phần này bạn sẽ làm ý như câu a vậy :33
*Thay x = -1 và y =-3 vào A, ta được :
A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)
A = -2.(-4) + 1 + 7 + 3
A = 8 + 11
A = 19
Câu 1:
(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)
<=> (4x2 - 12x +9) - 4 . (X2 - 9) + 11 =0
<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0
<=> -12x + 46 = 0
<=> X = 23/6
\(A=x^3-12xy-y^3\)
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)-12xy\)
Ta có: \(x-y=4\)
\(\Rightarrow A=4.\left(x^2+xy+y^2\right)-12xy\)
\(A=4x^2+4xy+4y^2-12xy\)
\(A=4x^2+4y^2-8xy\)
\(A=4.\left(x^2-2xy+y^2\right)\)
\(A=4.\left(x-y\right)^2\)
\(\Rightarrow A=4.4^2\)
\(A=64\)
Vậy \(A=64\) tại \(x-y=4\)
Tham khảo nhé~