(x+15) \(⋮\)(x+5)
(x+10)\(⋮\)x-3
2x+9\(⋮\)x+2
4x+20\(⋮\)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-3\right)\left(3x^2+1\right)-6x\left(x^2-x+1\right)+3x^2-2x=10\)
\(\Leftrightarrow6x^3+2x-9x^2-3-6x^3+6x^2-6x+3x^2-2x=10\)
\(\Leftrightarrow-6x-3=10\)
=>-6x=13
hay x=-13/6
b: \(\Leftrightarrow3x^2-3x+x-2-3x^2+5x=-8-5x\)
=>3x-2=-5x-8
=>8x=-6
hay x=-3/4
c: \(\Leftrightarrow64x^3-27-64x^3+32x^2-32x^2+x=20\)
=>x-27=20
hay x=47
1: =-2/9(15/17+2/17)=-2/9
2: \(=\dfrac{-6}{3}+\dfrac{-21}{90}\)
=-2-7/30=-67/30
3: \(=\dfrac{3}{4}\cdot\dfrac{7}{5}+\dfrac{9}{7}\cdot\dfrac{3}{2}\)
=21/20+27/14=417/140
4: =-25/13(5/19+14/19)=-25/13
5: =-7/5-45/21=-7/5-15/7=-124/35
1: =-2/9(15/17+2/17)=-2/9
2: =−63+−2190=−63+−2190
=-2-7/30=-67/30
3: =34⋅75+97⋅32=34⋅75+97⋅32
=21/20+27/14=417/140
4: =-25/13(5/19+14/19)=-25/13
5: =-7/5-45/21=-7/5-15/7=-124/35
1) (3x + 9)(3x - 6) = 0
=> \(\orbr{\begin{cases}3x+9=0\\3x-6=0\end{cases}}\)
=> \(\orbr{\begin{cases}3x=-9\\3x=6\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy ...
b) (2x + 15) - 25 = 47 - (10 - x)
=> 2x - 10 = 37 + x
=> 2x - x = 37 + 10
=> x = 47
3, tương tự
4) |4 - 3x| = 8
=> \(\orbr{\begin{cases}4-3x=8\\4-3x=-8\end{cases}}\)
=> \(\orbr{\begin{cases}3x=-4\\3x=12\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{4}{3}\\x=4\end{cases}}\)
Vì x là số nguyên nên ...
còn lại tương tự
a, Ta có :\(-30+\left(25-x\right)=-1\)
\(\Leftrightarrow\left(-30\right)+25-x=-1\)
\(\Leftrightarrow25-x=\left(-1\right)-\left(-30\right)\)
\(\Leftrightarrow25-x=29\\ \Leftrightarrow x=25-29\)
\(\Leftrightarrow x=\left(-4\right)\)
Vậy \(x=-4\)
b,Ta có :\(\left(x+5\right)+\left(x-9\right)=x+2\)
\(\Leftrightarrow x+5+x-9=x+2\)
\(\Leftrightarrow2.x+\left(5-9\right)=x+2\)
\(\Leftrightarrow\) \(2.x+\left(-4\right)=x+2\)
\(\Leftrightarrow2.x-x=4+2\)
\(\Leftrightarrow x=6\)
Vậy \(x=6\)
a: ĐKXĐ: \(x\notin\left\{4;-4\right\}\)
\(\dfrac{7}{4x+16}=\dfrac{7}{4\left(x+4\right)}=\dfrac{7\left(x-4\right)}{4\left(x+4\right)\left(x-4\right)}\)
\(\dfrac{11}{x^2-16}=\dfrac{11\cdot4}{4\left(x^2-16\right)}=\dfrac{44}{4\left(x-4\right)\left(x+4\right)}\)
b: \(\dfrac{6}{x\left(x+3\right)^2};\dfrac{x-3}{2x\left(x+3\right)^2}\)
ĐKXĐ: \(x\notin\left\{0;-3\right\}\)
\(\dfrac{6}{x\left(x+3\right)^2}=\dfrac{6\cdot2}{2x\left(x+3\right)^2}=\dfrac{12}{2x\left(x+3\right)^2}\)
\(\dfrac{x-3}{2x\left(x+3\right)^2}=\dfrac{x-3}{2x\left(x+3\right)^2}\)
c: \(\dfrac{-6}{1-x};\dfrac{3x}{x^2+x+1};\dfrac{x^2-3x+5}{x^3-1}\)
ĐKXĐ: \(x\ne1\)
\(-\dfrac{6}{1-x}=\dfrac{6}{x-1}=\dfrac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{3x}{x^2+x+1}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x^2-3x+5}{x^3-1}=\dfrac{x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
d: \(\dfrac{17}{5x};\dfrac{24}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)
ĐKXĐ: \(x\ne0;x\ne\pm2y\)
\(\dfrac{17}{5x}=\dfrac{17\cdot2\left(x-2y\right)\left(x+2y\right)}{5x\cdot2\cdot\left(x-2y\right)\left(x+2y\right)}=\dfrac{34\left(x^2-4y^2\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)
\(\dfrac{24}{x-2y}=\dfrac{24\cdot10x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{240x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)
\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{-\left(x-y\right)}{2x^2-8y^2}=\dfrac{-\left(x-y\right)}{2\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{-5x\left(x-y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{-5x^2+5xy}{10x\left(x-2y\right)\left(x+2y\right)}\)
a: \(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18\)
\(=\left[\left(2x+2\right)^2-1\right]\left(x+1\right)^2-18\)
\(=4\left(x+1\right)^4-\left(x+1\right)^2-18\)
\(=4\left(x+1\right)^4-9\left(x+1\right)^2+8\left(x+1\right)^2-18\)
\(=\left(x+1\right)^2\left[4\left(x+1\right)^2-9\right]+2\left[4\left(x+1\right)^2-9\right]\)
\(=\left[\left(2x+2\right)^2-9\right]\left[\left(x+1\right)^2+2\right]\)
\(=\left(2x+5\right)\left(2x-1\right)\left(x^2+2x+3\right)\)
b: \(\left(x^2+4x+3\right)\left(x^2+12x+35\right)+15\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15\)
\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
c: \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)
\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)
\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+143x^2-24x^2\)
\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+119x^2\)
\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)
\(=\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`x + 10 = 20`
`=> x = 20 -10`
`=> x = 10`
Vậy, `x = 10`
`b)`
`2 * x + 15 = 35`
`=> 2x = 35 - 15`
`=> 2x = 20`
`=> x = 20 \div 2`
`=> x = 10`
Vậy, `x = 10`
`c)`
`3 * ( x + 2 ) = 15`
`=> x + 2 = 15 \div 3`
`=> x + 2 = 5`
`=> x = 5 - 2`
`=> x = 3`
Vậy, `x = 3`
`d)`
`10 * x + 15 * 11 = 20 * 10`
`=> 10x + 165 = 200`
`=> 10x = 200 - 165`
`=> 10x = 35`
`=> x = 35 \div 10`
`=> x = 3,5`
Vậy,` x = 3,5`
`e)`
`4 * ( x + 2 ) = 3 * 4`
`=> x + 2 = 12 \div 4`
`=> x + 2 = 3`
`=> x = 3 - 2`
`=> x = 1`
Vậy,` x = 1`
`f)`
`33 x + 135 = 26 * 9`
`=> 33x + 135 = 234`
`=> 33x = 234 - 135`
`=> 33x = 99`
`=> x = 99 \div 33`
`=> x = 3`
Vậy, `x = 3`
`g)`
`2 * x + 15 + 16 + 17 = 100`
`=> 2x + 48 = 100`
`=> 2x = 100 - 48`
`=> 2x = 52`
`=> x = 52 \div 2`
`=> x =26`
`h)`
`2 * (x + 9 + 10 + 11) = 4 . 12 . 25`
`=> 2 * (x + 9 + 10 + 11) = 4*25*12`
`=> 2 * (x + 9 + 10 + 11) = 100*12`
`=> x + 9 + 10 + 11 = 100*12 \div 2`
`=> x + 30 = 600`
`=> x = 600 - 30`
`=> x = 570`
Vậy, `x = 570.`
a) \(x+10=20\Leftrightarrow x=10\)
b) \(2x+15=35\Leftrightarrow2x=20\Leftrightarrow x=10\)
c) \(3.\left(x+2\right)=15\Leftrightarrow x+2=5\Leftrightarrow x=3\)
d) \(10x+15.11=20.10\Leftrightarrow10x+165=200\Leftrightarrow10x=35\Leftrightarrow x=\dfrac{35}{10}=\dfrac{7}{2}\)
e) \(4.\left(x+2\right)=3.4\Leftrightarrow x+2=3\Leftrightarrow x=1\)
f) \(35x+135=26.9\Leftrightarrow35x=234-135\Leftrightarrow35x=99\Leftrightarrow x=\dfrac{99}{35}\)
g) \(2x+15+16+17=100\Leftrightarrow2x+48=100\Leftrightarrow2x=52\Leftrightarrow x=26\)
h) \(2.\left(x+9+10+11\right)=4.12.25\)
\(\Leftrightarrow x+30=2.12.25\)
\(\Leftrightarrow x=600-30\)
\(\Leftrightarrow x=570\)
1/ Suy ra: -35 + 7x - 2x + 20 = 15
5x - 15 = 15
5x = 30
x = 6
2/ Suy ra: 4x - 20 - 3x - 21 = -19
x - 41 = -19
x = 22
3/ Suy ra: 8 - 4x + 3x - 15 = 14
-7 -x = 14
x = -7 -14
x = -21
4/ Suy ra: 7x - 63 - 30 + 5x = -6 + 11x
7x + 5x - 11x = -6 +63 + 30
x = 87
5/ Suy ra: -21x +35 + 14x - 28 = 28
-21x + 14x = 28 +28 - 35
-7x = 21
x= -3
6/ Suy ra: 20 - 5x + 7x - 14 = -2
2x = -8
x = -4
7/ Suy ra: 4x +15 -5x = 7
-x = -8
x = 8
8/ Suy ra: 5x - 35 +30 -10x = 20
-5x - 5 = 20
-5x = 25
x = -5
9/ Suy ra: 35 - 7x + 5x - 10 = 15
-7x + 5x = 15 +10 - 35
-2x = -10
x = 5
\(\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{29}\cdot9^{10}-7\cdot2^{29}\cdot27^6}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot2^{27}\cdot3^{20}}{5\cdot2^{29}\cdot3^{20}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3^2-7\right)}\)
\(=\dfrac{10-9}{5\cdot9-7}=\dfrac{1}{38}\)
1.x=0
2.x=3
3.x=3
4,x=5