\(10^{99}+2^3⋮9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
1.
B= 9+99+999+..+999...9(50 chữ số 9)
B= 10-1+100-1+1000-1+...+100...0(50 chữ số 0)-1
B=[10+100+1000+...+100...0(50 chữ số 0)]-(1+1+1+...+1)(50 số hạng 1)
B= 111...10(50 chữ số 1) - 50
B = 111...1060 (48 chữ số 1)
1. Tính
A = 9 + 99 + 999 + 9999
A = 108 + 999 + 9999
A = 1170 + 9999
A = 11106
\(A=\frac{99.100.101}{3}=333300\)
\(B=\frac{2015.2016.2017.2018}{4}-\frac{6.7.8.9}{4}=4133639960604\)
\(C=\frac{3^{51}-1}{3}+1\)
3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3a= 99.100.101
a: 3/5>1/2
b: 5/6<7/8
c: 8/9<7/6
d: 9/4<7/3
e: 8/12=2/3
f: 77/99=7/9
\(\dfrac{3}{5}>\dfrac{1}{2}\)
\(\dfrac{5}{6}< \dfrac{7}{8}\)
\(\dfrac{8}{9}< \dfrac{7}{6}\)
\(\dfrac{9}{4}< \dfrac{7}{3}\)
\(\dfrac{8}{12}=\dfrac{2}{3}\)
\(\dfrac{77}{99}=\dfrac{7}{9}\)
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
1099 có tổng các chữ số là 1
23=8
=> 1099 + 23 có tổng các chữ số là 9 => 1099 + 23 chia hết cho 9
1099 = 10000...0 (99 số 0) chia 9 dư 1
23 = 8 chia 9 dư 8
=> 1099 + 23 chia 9 dư 9
hay 1099 + 23 chia hết cho 9