A = 2^0+2^1+...+2^2029
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh nghi ban dang chep sai de bai
the de bai cua minh thi giai nhu sau
A=1/2015.2016+1/2016.2017+......+1/2029.2030
A=1/2015-1/2016+1/2016-1/2017+.....+1/2029-1/2030
A=1/2015-1/2030=3/818090
\(2029-\left\{\left[39-\left(2^3.3-21\right)^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-\left(8.3-21\right)^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-\left(24-21\right)^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-3^2:3+2018^0\right]\right\}\)
\(=2029-\left\{\left[39-9:3+1\right]\right\}\)
\(=2029-\left\{\left[39-3+1\right]\right\}\)
\(=2029-37\)
\(=2022\)
A = 1 + 2 + 22 +...........+ 22029
A = ( 1 + 2 + 22 + 23 + 24 ) +...........+( 22025 + 22026 + 22027 + 22028 + 220029)
A = 1(1 + 2 + 22 + 23 + 24) +............+ 22025( 1 + 2 + 22 + 23 + 24 )
A = 1 . 31 +.........+ 22025 . 31
A = 31( 1 + .......... + 22025)
Vì 31 chia hết cho 31 => 31( 1+...........+22025) chia hết cho 31
Hay A chia hết cho 21. ( Tính chất 1)
\(P=x^2+\left(2xy-6x\right)+2y^2-8y+2029\)
\(P=x^2+2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+2y^2-8y+2029\)
\(P=\left(x+y-3\right)^2-\left(y^2-6y+9\right)+2y^2-8y+2029\)
\(P=\left(x+y-3\right)^2+y^2-2y+1+2019\)
\(P=\left(x+y-3\right)^2+\left(y-1\right)^2+2019\) \(\ge2019\forall x,y\)
\(P=2019\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy Min P = 2019 \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
1.\(\Leftrightarrow a^2+b^2-ab-a-b+3>0\)
\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+6>0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+4>0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+4>0\) ( luôn đúng )
Do đó suy ra đpcm
\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)
\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)
\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)
\(\Leftrightarrow x=2014\)
Ta có A = 20 + 21+22 + .. +22029
2A = 21+22 + .. +22029 + 22030
Lấy 2A - A : 21+22 + .. +22029 + 22030 - 20 + 21+22 + .. +22029
A :22030 - 1
Vậy A = 22030 - 1