Tìm x biết : 2x7 = 3x5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
2 x 7 = 75 35 2 . 7 + x 7 = 15 7 14 + x = 15 x = 15 - 14 x = 1
Đáp án A
2 x 7 = 75 35 2 . 7 + x 7 = 15 7 14 + x = 15 x = 15 - 14 x = 1
a/\(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{18}{5}\)\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot11}{5\cdot7}=\frac{22}{35}\)
b/\(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11^2\cdot5^3\cdot13^3\cdot2\cdot3}{2^3\cdot3^4\cdot5\cdot11^2\cdot13}=\frac{5^2\cdot13^2}{2^2\cdot3^3}=\frac{4225}{108}\)
c/\(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}=\frac{2^2\cdot3^3\cdot37\cdot5\cdot199+2\cdot3^2\cdot13\cdot17}{2^3\cdot3\cdot83\cdot11\cdot181-2^4\cdot3\cdot83}=\frac{2\cdot3^2\cdot11\cdot20101}{2^3\cdot3^3\cdot13\cdot17\cdot83}=\frac{11\cdot20101}{2^2\cdot3\cdot13\cdot17\cdot83}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+3\right)}=\frac{20}{41}\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{20}{41}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{40}{41}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\frac{1}{x+2}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 41 - 2
=> x = 39
Vẫy x = 39
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
=> \(1-\frac{1}{x+2}=\frac{40}{41}\)
=> \(\frac{1}{x+2}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 39
=> (41-2x-5)=720:40
=> (41-2x-5)=18
=> 41-2x=23
=> 2x=18=>x=9
1. a) \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)
b) \(\left(x^3-x^2+x-1\right):\left(x-1\right)=\dfrac{x^3-x^2+x-1}{x-1}\)
\(=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{x-1}=\dfrac{\left(x-1\right)\left(x^2+1\right)}{x-1}=x^2+1\)
2: \(x^2-8x+7=0\)
=>\(x^2-x-7x+7=0\)
=>\(x\left(x-1\right)-7\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x-7\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
1:
a: \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=21x^7+14x^5\)
b: \(\dfrac{x^3-x^2+x-1}{x-1}=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{\left(x-1\right)}\)
\(=x^2+1\)