Cho x,y,z là các số thực thỏa mãn x+y+z=1. Tìm giá trị lớn nhất của biểu thức
P=9xy+10yz+11zx.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=9xy+10yz+11zx=9xy+z(10y+11x)=9xy(1-x-y)(10y+11x)
khai triển và rút gọn ta được :
\(P=-11x^2-10y^2+11x+10y-12xy\)
tương đương với :
\(11x^2+\left(12y-11\right)x+10y^2-10y+P\ge0\)(1)
Coi đây là tam thức bậc 2 ẩn x do đk của x => (1) phải có nghiệm hay
\(\Delta-\left(12y-11\right)^2-44\left(10y^2-10y+P\right)\ge0\)
Hay \(-296y^2+176y+121-44P\ge0\)
tương đương với
\(P\le-\frac{74}{11}\left(y^2-\frac{22}{37}y-\frac{121}{296}\right)\)
dùng phép tách thành bình phương ; ta dễ thấy :
\(y^2-\frac{22}{37}y-\frac{121}{296}\ge-\frac{5445}{10952}\)
=> \(P\le\left(\frac{74}{-11}\right).\left(-\frac{5445}{10952}\right)-\frac{495}{148}\)
vậy \(MaxP=\frac{495}{148}\)đạt được khi \(y=\frac{11}{37};x=\frac{25}{74};z=\frac{27}{74}\)
Ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)
\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)
Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??
Bạn tham khảo nhé:
Ta có \(xyz=1\Rightarrow x+y+z\ge3\)
Áp dụng BĐT sờ- swat,ta có:
\(Q\ge\frac{9}{2\left(x+y+z\right)+3}\le1\)(vì \(x+y+z\ge3\))
Vậy max=1