Tìm GTNN
a) A= x2-4x+15
b) B=9x2-3x-17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)
\(=64-x^3+\left(x-4\right)^3\)
\(=64-x^3+x^3-12x^2+48x-64\)
\(=-12x^2+48x\)
b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(=27x^3+8-27x^3+8\)
=16
c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)
\(=x^3+1-x\left(x^2+2x+1\right)\)
\(=x^3+1-x^3-2x^2-x\)
\(=-2x^2-x+1\)
\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4\)
Kl: MinA = 4
\(B=x^2-x+1=\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
kl:.......
\(C=5x^2+5x+1=5\left(x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+1-\dfrac{5}{4}=5\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
kl:.......
\(D=3x^2+4x+2=3\left(x^2+2\cdot\dfrac{2}{3}x+\dfrac{4}{9}\right)+2-\dfrac{4}{3}=3\left(x+\dfrac{2}{3}\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)
kl:......
\(E=\dfrac{1}{2}\cdot x^2+x-1=\dfrac{1}{2}\left(x^2+2x+1\right)-1-\dfrac{1}{2}=\dfrac{1}{2}\left(x+1\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\)
kl:............
\(F=\dfrac{1}{9}x^2+3x+2=\dfrac{1}{3}\left(x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+2-\dfrac{1}{12}=\dfrac{1}{3}\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{12}\ge\dfrac{23}{12}\)
kl:..........
a,x3+3x2+3x+1
b,x2+6x+9
c,-x3+9x2-27x+27
d,x2+4x+4
k,10x-25-x2
f,(x+y)2-9x2
g,8x3+42x2y+16xy2+6xy+y3
a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)
b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)
c) \(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)
d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)
k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)
f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)
\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
\(a,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-3\left(3x-1\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^2\left(x-1\right)^2-\left(x-2\right)^2-\left(x-2\right)^3=0\\ \Leftrightarrow\left(x-2\right)^2\left[\left(x-1\right)^2-1-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-2\right)^2\left(x^2-2x+1-1-x+2\right)=0\\ \Leftrightarrow\left(x-2\right)^2\left(x^2-3x+2\right)=0\\ \Leftrightarrow\left(x-2\right)^3\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
a/ \(A=x^2-4x+15\)
\(=x^2-4x+4+11\)
\(=\left(x-2\right)^2+11\)
Nhận xét : \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+11\ge11\)
\(\Leftrightarrow A\ge11\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{Min}=11\Leftrightarrow x=2\)
b/ \(B=9x^2-3x+17\)
\(=9x^2-3x+\dfrac{1}{4}+\dfrac{67}{4}\)
\(=\left(3x-\dfrac{1}{2}\right)^2+\dfrac{67}{4}\)
Nhận xét : \(\left(3x-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(3x-\dfrac{1}{2}\right)^2+\dfrac{67}{4}\ge\dfrac{67}{4}\)
\(\Leftrightarrow B\ge\dfrac{67}{4}\)
Dấu "=" xảy ra khi : \(x=\dfrac{1}{6}\)
Vậy...
a)\(A=x^2-4x+15=\left(x-2\right)^2+11\)
Vì \(\left(x-2\right)^2\ge0\) nên muốn \(x^2-4x+15\) có được GTNN thì \((x-2)^2=0\)
\(\Rightarrow Min_A=0+11=11\)