K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0.^{\left(1\right)}\)

\(NX\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}\Rightarrow}\left(1\right)\ge0\)

Dấu \("="\)xảy ra khi và chỉ khi

 \(\hept{\begin{cases}\left|2x^2+4x\right|=0\\\left|x^2+5x+6\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(2x+4\right)=0\\x\left(x+5\right)=0-6\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x\inƯ\left(6\right)\end{cases}\Rightarrow x=-2}\)

Vậy x = -2

23 tháng 10 2018

\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0\)

Ta có : \(\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}}\Rightarrow\left|2x^2+4x\right|+\left|x^2+5x+6\right|\ge0\)

\(\Rightarrow\orbr{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(2x+4\right)=0\left(1\right)\\x\left(x+5\right)=-6\left(2\right)\end{cases}}\)

(1) \(x\left(2x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

(2) x(x+5)=-6

=> x2+5x=-6

=> x2+5x+6=0

=> x2 +3x+2x+6=0

=> x(x+3)+2(x+3) = 0

=> (x+3)(x+2)=0

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)

Vậy ........

a) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)

b) Ta có: \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: S={2;3}

c) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: S={1;2}

d) Ta có: \(2x^2-6x+1=0\)

\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)

mà \(2\ne0\)

nên \(x^2-3x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)

e) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)

25 tháng 1 2021

cho vào máy tính là ra hết

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

26 tháng 7 2019

I I  là dấu giá trị tuyệt đối nhé

26 tháng 7 2019

|7 + 5x| = 1 - 4x

=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)

=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)

|4x- 2x| + 1 = 2x

=> |4x2 - 2x| = 2x - 1

=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)

=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)

Vậy ...

24 tháng 11 2018

1.\(2x\left(x-3\right)-5\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x+5=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)

2.\(B=x^2+4x+5\)

\(B=x^2+4x+4+1\)

\(B=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow Min_B=1\) khi x+2=0\(\Rightarrow\)x=-2

23 tháng 11 2022

bài 6:

\(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}=x^2-3x+1\)

13 tháng 3 2020

\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)

Câu \(b\) thấy hơi kì nên chắc đề như này.

\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)

\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)

\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

13 tháng 3 2020

\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)

3 tháng 5 2017

      c.   x^2-5x +6 = 0

<=> x^2 - 5x = -6

<=> - 4x = -6

<=> x= -6/-4

3 tháng 5 2017

 Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm

A)  2x2(x+3) - x(x+3) = 0  <=> x(x - 3)(2x-1)=0

B)  (2x+5)2 - (x+2)2=0  <=>  (x+3)(3x+7)=0

C)  (x2-2x) - (3x-6)=0  <=> (x-2)(x-3)=0

D)  (2x-7)(2x-7-6x+18)=0   <=> (2x-7)(-4x+11)=0

E)  (x-2)(x+1) - (x-2)(x+2)=0   <=>  (x-2)*(-1)=0   <=> x-2=0

G)  (2x-3)(2x+2-5x)=0  <=> (2x-3)(-3x+2)=0

H)  (1-x)(5x+3+3x-7)=0     <=>  (1-x)(8x-4)=0

F)   (x+6)*3x=0

I)  (x-3)(4x-1-5x-2)=0  <=>  (x-3)(-x-3)=0

K)   (x+4)(5x+8)=0

H)  (x+3)(4x-9)=0

3 tháng 5 2017

c. x^2-5x+6=0

<=> x^2-5x=-6

<=> -4x=-6

<=> x=-6/-4

vậy tập nghiệm của pt là s={-6/-4}

14 tháng 7 2017

a) \(5x^2-4x+1=0\)

Ta có: \(5x^2-4x+1=5\left(x^2-\dfrac{4}{5}x+\dfrac{1}{5}\right)\)

= \(5\left(x^2-2x.\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{1}{25}\right)\)

= \(5\left[\left(x-\dfrac{2}{5}\right)^2+\dfrac{1}{25}\right]\)

= \(5\left(x-\dfrac{2}{5}\right)^2+\dfrac{1}{5}>0\forall x\)

Do đó phương trình trên vô nghiệm.

b) \(x^2-x-6=0\)

\(\Leftrightarrow\) \(x^2-3x+2x-6=0\)

\(\Leftrightarrow\) \(x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\) \(\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy x = 3 hoặc x = -2

c) \(2x^2+x-1=0\)

\(\Leftrightarrow\) \(2x^2+2x-x-1=0\)

\(\Leftrightarrow\) \(2x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\) \(\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy x = -1 hoặc x = \(\dfrac{1}{2}\)

14 tháng 7 2017

a)

5x2 - 4x + 1 = 0

<=> \(5\left(x^2-\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{1}{5}=0\)

\(\Leftrightarrow5\left(x-\dfrac{2}{5}\right)^2+\dfrac{1}{5}=0\)

\(5\left(x-\dfrac{2}{5}\right)^2+\dfrac{1}{5}\ge\dfrac{1}{5}>0\)

Vậy pt vô nghiệm.

b)

x2 - x - 6 = 0

<=> (x - 3)(x + 2) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy S = {3 ; - 2}

c)

2x2 + x - 1 = 0

<=> (2x - 1)(x + 1) = 0

<=> \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy S = {- 1 ; 0,5}