Cho : a;b;c;d \(\in\) Z và a+b+c chia hết cho 6 . Cm : a3 +b3 + c3 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có : \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Đây là tích của 3 số nguyên liên tiếp nên trong 3 số nguyên liên tiếp tồn tại 1 bội số của 2 và 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2;3\)
Mà \(\left(2,3\right)=1\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)
\(\Rightarrow a^3-a⋮6\left(1\right)\)
CMTT , ta có : \(b^3-b⋮6;c^3-c⋮6\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow a^3-a+b^3-b+c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Mà \(a+b+c⋮6\)
\(\Rightarrow a^3+b^3+c^3⋮6\left(đpcm\right)\)