Tìm giá trị lớn nhất của biểu thức:
\(P\left(x\right)=-x^2+13x+2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2019\left(x-2y\right)^{2018}-\left(6y-3y\right)^{2018}-\left|xy-2\right|\\ \)
\(Do\left(x-2y\right)^{2018}\ge0\Rightarrow2019\left(x-2y\right)^{2019}\)
\(\left(6y-3x\right)^{2018}\ge0\Rightarrow-\left(6y-3x\right)^{2018}\le0\)
\(\left|xy-2\right|\ge0\Rightarrow-\left|xy-2\right|\le0\)=>\(M\le0-0-0=0.\)
GIá tri lon nhat cua Mla 0 khi va chi khi
\(\hept{\begin{cases}x-2y=0\\6y-3x=0\\xy-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\6y=3x\\xy=2\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=\frac{1}{2}x\\xy=2\end{cases}}}\)
\(\Rightarrow xy=2y.y=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
vay ..........
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
ta có
\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x-2017\right|=1\)
dấu bằng xảy ra khi (x-2017)(x-2018)\(\ge\)0
bn tự làm tiếp
Để H lớn nhất thì \(\frac{1}{H}=\frac{\left(x+2018\right)^2}{x}\) nhỏ nhất.
Ta có: \(\frac{1}{H}=\frac{x^2+2.x.2018+2018^2}{x}=x+4036+\frac{2018^2}{x}\)
\(\frac{x+\frac{2018^2}{x}}{2}\ge\sqrt{x.\frac{2018^2}{x}}=2018\) (áp dụng bất đẳng thức cosi) \(\Rightarrow x+\frac{2018^2}{x}\ge4036\)
\(\frac{1}{A}\ge4036+4036=8072\Rightarrow A\le\frac{1}{8072}\)
Dấu "=" xảy ra khi: \(x=\frac{2018^2}{x}\Rightarrow x^2=2018^2\Rightarrow x=2018\left(x>0\right)\)
Vậy GTLN của H là \(\frac{1}{8072}\Leftrightarrow x=2018\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
Ta có : \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|-2y+8\right|\ge0\end{cases}}\)
\(\Rightarrow P=\left|x-2\right|+\left|-2y+8\right|+2018\)đạt GTNN
\(\Leftrightarrow\)\(\hept{\begin{cases}\left|x-2\right|=0\\\left|-2y+8\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\-2y+8=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\-2y=-8\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy P đạt GTNN <=> x = 2 ; y = 4
*<=> : khi và chỉ khi
C = ..................................................................... ( giống cái đề bài )
= ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )
= ( x + x + x ) + ( 2017 + 2018 + 2019 )
= 3x + 6054
Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0
( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0
( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0
SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0
dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018
Vậy C có GTNN là 0 khi x = - 2018