Chứng tỏ : 1/1+3 + 1/1+3+5 + 1/1+3+5+7+...+1/1+3+5+7+...+2017 < 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+5+...+2017}\)
\(\Rightarrow A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{1+3+...+2017}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2017^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{4}\)
\(\dfrac{1}{3^2}< \dfrac{1}{3.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
.................
\(\dfrac{1}{2017^2}< \dfrac{1}{2016.2017}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2016.2017}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{2017}\)
\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{2017}\)
\(\Rightarrow A< \dfrac{3}{4}\)
Vậy \(A< \dfrac{3}{4}\).
Có \(\dfrac{1}{1+3}\) + \(\dfrac{1}{1+3+5}\) +...+ \(\dfrac{1}{1+3+...+2017}\)
= \(\dfrac{1}{2^2 }\)+\(\dfrac{1}{3^2}\) + ... +\(\dfrac{1}{2017^2}\)
Lại có :
\(\dfrac{1}{2^2}\) = \(\dfrac{1}{4} \)
\(\dfrac{1}{3^2}\) <\(\dfrac{1}{2.3}\)
...
\(\dfrac{1}{2017^2}\) <\(\dfrac{1}{2016.2017}\)
\(\Rightarrow \) A< \(\dfrac{1}{4} \) +\(\dfrac{1}{2.3}\)+... +\(\dfrac{1}{2016.2017}\)
A<\(\dfrac{1}{4} \)+\(\dfrac{1}{2}\)- \(\dfrac{1}{3}\) +...+\(\dfrac{1}{2016}- \dfrac{1}{2017}\)
A< \(\dfrac{1}{4} \)+\(\dfrac{1}{2}\) -\(\dfrac{1}{2017}\)
A<\(\dfrac{3}{4}\) -\(\dfrac{1}{2017}\)
\(\Rightarrow\)A<\(\dfrac{3}{4}\) (đpcm)
chúc bạn học tốt !!!
A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2017)
A=1/2^2+1/3^2+1/4^2+...+1/1009^2
2A=2/2^2+2/3^2+2/4^2+...+2/1009^2
Ta co :(x-1)(x+1)=(x-1)x+x-1=x^2-x+x-1=x^2-1<x^2
suy ra 2A<2/(1*3)+2/(3*5)+2/(5*7)+...+2/(1008*1010)
suy ra 2A <1-1/3+1/3-1/5+1/5-1/7+...+1/1008-1/1010
suy ra 2A<1-1/1010
suy ra 2A<2009/2010<1<3/2
suy ra 2A <3/2
suy ra A <3/4 (dpcm)
nho k cho minh voi nha
A=1/2^2+1/3^2+....+1/1009^2
2A=2/2^2+2/3^2+...+2/1009^2
Ta có : (x-1).(x+1)=(x-1).x+x-1=x^2-x+x-1=x^2-1<x^2
2A<2/1.3+2/3.5+2/5.7+...+2/1008.10010
2A<1-1/3+1/3-1/5+...+1/1008-1/1010
2A<1-1/1010
2A<1009/1010<1<3/2
2A<3/2
A<3/4
ĐPCM
Nhớ cho mình nha!
\(VT=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{1018081}=\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}=\)
\(=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1009-1008}{1008.1009}=\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)